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ABSTRACT
Prolonged or excessive formation and liberation of cytotoxic substances from neutrophils intensifies inflammation and the risk of 

tissue damage. From this perspective, administration of substances which are able to reduce activity of neutrophils and to enhance 

apoptosis of these cells may improve the therapy of pathological states connected with persistent inflammation. In this short review, 

neutrophil oxidative burst and apoptosis are presented as potential targets for pharmacological intervention. Effects of natural 

polyphenols (resveratrol, pterostilbene, pinosylvin, piceatannol, curcumin, N-feruloylserotonin) are summarised, considering the ability 

of these compounds to affect inflammation and particularly neutrophil activity. The intended neutrophil inhibition is introduced as 

a part of a new strategy for pharmacological modulation of chronic inflammatory processes, focused on supporting innate anti-

inflammatory mechanisms and enhancing resolution of inflammation. 
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to cellular dysfunction, tissue damage and to persisting 

inflammation. Moreover, defective regulation is thought 

to participate in the pathogenesis of chronic inflamma-

tory diseases, such as asthma, rheumatoid arthritis or 

chronic obstructive pulmonary disease. Therefore the 

novel strategy of anti-inflammatory therapy is based upon 

pharmacological agents capable to enhance the resolution 

of inflammation (Sawatzky et al., 2006; Serhan et al., 2007; 

Hallett et al., 2008). Several drugs were found to promote 

pro-resolution pathways, such as aspirin (stimulates for-

mation of lipoxins), glucocorticoids (activate macrophages 

and accelerate apoptosis of eosinophils), methotrexate 

(increases synthesis of endogenous anti-inflammatory 

mediators), as well as substances modulating neutrophil 

activity and apoptosis (Yasui & Baba, 2006; Rossi et al., 

2007; Filep & El Kebir, 2009).

Pro-infl ammatory activity of neutrophils

Neutrophils (neutrophilic polymorphonuclear leu-

kocytes) represent the body’s primary line of defense 

against invading pathogens. Nevertheless, recently they 

New strategy for pharmacological 
modulation of infl ammatory processes

Resolution (i.e. termination of the defense/beneficial 

inflammation) has historically been viewed as a passive 

process, occurring as a result of withdrawal of pro-

inflammatory signals. Thus most anti-inflammatory 

drugs in use suppress mechanisms engaged at the onset 

and progression of inflammation, but they are not targeted 

to support natural anti-inflammatory reactions. Only 

recently has the concept been established that resolution 

is an active process with a distinct set of chemical media-

tors (lipoxins, resolvins, protectins), involving decrease 

in activities of neutrophils and eosinophils, programmed 

death (apoptosis) of these cells, as well as their clearance 

from the site of inflammation by macrophages (Kohli & 

Levy, 2009; Serhan et al., 2007, 2008). An abnormal, inef-

fective or absent regulation of these processes contributes 
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have been increasingly studied as active participants in 

the initiation and progression of many pathological states, 

such as rheumatoid polyarthritis, carcinoma, allergy or 

ischaemia-reperfusion. All these conditions are generally 

accompanied by dysregulated, persistent and excessive 

activation of neutrophils, resulting in damage of adjacent 

tissues by neutrophil “destructive hardware” – by reac-

tive oxygen species, cytotoxic proteins and proteolytic 

enzymes (Cascao et al., 2009, 2010; Fialkow et al., 2007; 

Wright et al., 2010). In rheumatoid arthritis, neutrophil 

derived oxidants can induce cartilage degradation, 

depolymerise hyaluronan and decrease its lubricative 

properties. Further they can reduce the protective 

antioxidant and antiproteinase capacity of synovial 

fluid and thus participate in joint erosion (Cascao et al., 

2009; Edwards & Hallett, 1997). Besides, neutrophils are 

capable to release inflammatory mediators (eicosanoids, 

chemokines, cytokines), which along with their altered 

recruitment and delayed apoptosis, have the potential to 

maintain permanent inflammation (Cascao et al., 2010; 

Wright et al., 2010). The treatment of diseases associated 

with chronic inflammation should thus be focused also 

on neutrophil functions; formation of reactive oxygen 

intermediates and apoptosis of these cells represent two 

promising targets for pharmacological intervention.

Formation of reactive oxygen species

Reactive oxygen species (ROS) are produced in large 

quantities when neutrophils are stimulated by pro-

inflammatory agents or by particles such as bacteria. This 

process, known as “oxidative burst”, is initiated by the 

activation of NADPH oxidase (NADPH: nicotine amide 

adenine dinucleotide phosphate). During this process, the 

cytosolic phox proteins (phox: phagocyte oxidase) p47phox, 

p67phox, p40phox and Rac2 translocate to the plasma 

membrane or to membranes of specific granules, where 

they associate with the membrane-bound components 

(p22phox, gp91phox) to assemble the catalytically active 

oxidase (El-Benna et al., 2010; Ambruso et al., 2004). A 

partial association of NADPH oxidase components was 

observed in neutrophils primed with TNFα, GM-CSF or 

LPS. This configuration, not sufficient for ROS genera-

tion, amplifies the oxidative burst initiated by subsequent 

stimulation of neutrophils (Sheppard et al., 2005).

Activated NADPH oxidase transfers an electron from 

NADPH to molecular oxygen, generating superoxide 

anion. This precursor of other ROS is immediately trans-

formed into hydrogen peroxide (H2O2), spontaneously or 

through enzymatic dismutation by superoxide dismutase. 

Interaction between H2O2 and superoxide anion can give 

rise to the hydroxyl radical, one of the most powerful 

oxidants. Moreover, hydrogen peroxide is a substrate 

of myeloperoxidase, which catalyses its transformation 

into highly toxic molecules such as hypochlorous acid, 

chloramines and tyrosyl radicals (El-Benna et al., 2010; 

Robinson, 2009). The percentage of particular oxygen 

metabolites was found to be dependent on the mechanism 

of neutrophil activation (Takahashi et al., 1991).

Activated neutrophils form and liberate reactive oxy-

gen species both extra- and intracellularly (El-Benna et al., 

2010; Karlsson & Dahlgren, 2002). Oxidative burst arising 

inside neutrophils is much less pronounced and reaches 

maximum values later than the external ROS formation. 

The intracellular oxidants fulfill a regulatory role and 

participate in the initiation of neutrophil apoptosis (Luo 

& Loison, 2008; Witko-Sarsat et al., 2011). The substantial 

part of reactive oxygen species is formed at neutrophil 

plasma membranes and is liberated extracellularly or into 

phagosomes. These radicals are involved in the elimina-

tion of pathogens, however their overproduction may 

result in damage of surrounding tissues. Confirmation 

of the destructive role of radicals in pathological states 

associated with persistent inflammation (Halliwell & 

Whiteman, 2004; Lonkar & Dedon, 2011) initiated an 

Box 1. Factors regulating neutrophil apoptosis.

Pro-apoptotic factors

  Bcl-2 (B-cell lymphoma-2) proteins Bak, Bax, Bid control 
integrity of mitochondrial membrane

  Bcl-2 proteins Bad, Bim activate Bak/Bax and inhibit anti-
apoptotic Bcl-2 proteins

  Cytochrome c, APAF1 (apoptotic protease-activating 
factor-1) activate caspase-9

  Caspases (cystein-dependent aspartate-directed prote-
ases); initiate caspases-8 and -9 activate the executioner 
caspase-3, responsible for cytomorphological alterations

  TNFα (tumour necrosis factor-α, high concentrations) 
activates caspase-8

  Reactive oxygen intermediates cause DNA damage, 
upregulate death receptor clustering and activation of 
caspase-8

  Cathepsin D activates caspase-8 and Bid
  Calpain 1 regulates Bax and caspase-3 activation
  Inhibitors of CDK (cycline-dependent kinase), e.g. 

R-roscovitine, reduce Mcl-1 level 

Anti-apoptotic factors

  Bcl-2 (B-cell lymphoma-2) proteins Mcl-1, Bcl-XL, A1 
control integrity of mitochondrial membrane

  XIAP (X-linked inhibitor of apoptosis protein) inhibits 
activity of caspases -3 and -9

  cAMP/protein kinase A inhibits caspase-8
  NF-κB (nuclear factor-κB) increases transcription of 

survival proteins Mcl-1 and A1
  p38MAPK (mitogen-activated protein kinase) inhibits 

caspases -8 and -3
  PI3K (phosphoinositide-3-kinase) inhibits Bad and Bax 

activation
  TNFα (tumour necrosis factor-α, lower concentrations) 

stimulates expression of A1
  GM-CSF (granulocyte macrophage-colony stimulating 

factor) upregulates antiapoptotic pathways such as PI3K, 
blocks Bid/Bax redistribution

  LPS (lipopolysaccharide) upregulates pro-survival factors 
Mcl-1 and A1
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intensive search for substances with antioxidant activity. 

Since the optimum therapy is expected to minimise tissue 

damage without reduction of the physiological function of 

neutrophils, separate analysis of extra- and intracellular 

effects of antioxidants is of particular importance. The 

chemiluminescence method, based on different abilities 

of luminol and isoluminol to cross biological membranes 

and to interact with radicals inside cells, represents an 

effective tool for such differentiation (Drábiková et al., 

2006; 2009). 

Neutrophil apoptosis

Apoptosis is a complex physiological mechanism in which 

a cell undergoes programmed death as a result of with-

drawal of survival factors and/or of exposure to pro-apop-

totic signals. It represents a sensitive and highly regulated 

process (Box 1), which includes mitochondrial membrane 

permeabilisation, followed by the release of cytochrome c 

and other pro-apoptotic proteins into the cytosol, gradual 

activation of caspases, DNA fragmentation, chromatin 

condensation, loss of membrane asymmetry and forma-

tion of apoptotic bodies. In contrast to necrosis, apoptosis 

saves the integrity of neutrophil membranes and prevents 

the discharge of cytotoxic and proteolytic contents into the 

surrounding tissues (Luo & Loison, 2008; Witko-Sarsat et 

al., 2011; Hallett et al., 2008). Alterations in plasma mem-

brane (e.g. externalisation of phosphatidylserine) facilitate 

the recognition and clearance of apoptotic neutrophils 

by macrophages, resulting in safe removal of these cells 

from the site of inflammation. Moreover, on recognising 

apoptotic neutrophils, macrophages are programmed 

to upregulate the production of anti-inflammatory 

mediators such as transforming growth factor (TGF)-β 

and interleukin (IL)-10, resulting in reduction of the 

inflammatory process (Duffin et al., 2010; Nussbaum & 

Shapira, 2011). Due to these facts, better comprehension 

of neutrophil apoptosis might lead to novel therapeutic 

strategies designed to enhance resolution of inflamma-

tion without tissue damage (Witko-Sarsat et al., 2011). At 

present, a great deal of substances directing neutrophils 

to apoptosis are tested in vitro as well as under conditions 

of experimental inflammation (Hallett et al., 2008; Hu 

et al., 2005; Sawatzky et al., 2006; Derouet et al., 2006; 

Serhan et al., 2007; Jagetia & Aggarwal, 2007). The most 

intensively examined substances have been inhibitors of 

nuclear factor-κB, compounds modifying the expression 

of pro- and anti-apoptotic Bcl-2 (B-cell lymphoma-2) 

proteins or PI3K (phosphoinositide-3-kinase) and CDK 

(cycline-dependent kinase) inhibitors.

Neutrophils as potential targets for 
pharmacological intervention

Prolonged or excessive formation and liberation of 

cytotoxic substances from neutrophils, accompanied 

by delayed apoptosis of these cells, intensify inflamma-

tion and the risk of tissue damage (Figure 1). From this 

PHARMACOLOGICAL INTERVENTION

Increased activity

Delayed apoptosis

Enhanced apoptosis

Decreased activity
RESOLUTION

Neutrophil lysis

INFLAMMATION

Persistent inflammation
Tissue damage

Figure 1. Scheme illustrating the impact of neutrophils on the fate of infl ammatory reaction. Prolonged or exces-
sive formation and liberation of cytotoxic substances from neutrophils, along with delayed apoptosis of these cells, 
intensify infl ammation and the risk of tissue damage. Pharmacological intervention, accelerating apoptosis and 
reducing activities of neutrophils, leads to resolution and contributes to termination of infl ammatory reaction.
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perspective, the pharmacological intervention capable to 

enhance the resolution of inflammation through modula-

tion of its important inputs – activity and apoptosis of 

neutrophils – represents a prospective alternative. To 

date, the intended neutrophil inhibition has not been 

involved in the therapy of pathological states connected 

with persistent inflammation. Since this therapy is 

long-lasting and often accompanied with many adverse 

reactions, co-application of substances which are able 

to reduce the activity of neutrophils and/or to enhance 

apoptosis of these cells may lead to its increased effec-

tiveness and reduced toxicity. In this regard, the group of 

natural polyphenols could provide appropriate candidates 

for such a combined therapy.

Table 1. Mechanisms of the anti-inflammatory activity of natural polyphenols.

Compound References

Resveratrol inflammatory biomarkers (e.g. TNFα, 5-lipoxygenase, COX-1, COX-2, TXB2, iNOS, CRP), 
expression of angiogenic and metastatic gene products (e.g. MMPs, VEGF, cathepsin 
D, and ICAM-1), activity protein kinases (e.g. src, PI3K, JNK, and AKT), expression 
of antiapoptotic gene products (e.g. Bcl-2, Bcl-XL, XIAP and survivin), adenosine 
nucleotide secretion from activated platelets, IL-8, GM-CSF, activation of NF-κB, 
antioxidant enzymes (e.g. catalase, superoxide dismutase and hemoxygenase-1), 
antioxidant activity

Alarcón de la Lastra & Villegas, 2005;
Haricumar & Aggarwal, 2008;
Anonym, 2010

Pterostilbene activation of NF-κB, COX-1, COX-2, iNOS
production of pro-inflammatory mediators (PGE2, TNFα), antioxidant activity 

Perečko et al., 2010;
Cichocki et al., 2008;
Remsberg et al., 2008;
Paul et al., 2009;
Anonym, 2010;

Pinosylvin antioxidant activity, activation of NF-κB, 
production of pro-inflammatory mediators, 
COX-2 and iNOS expression

Roupe et al., 2006;
Lee et al., 2006;
Park et al., 2005;
Park et al., 2011

Piceatannol Syk, COX-2, iNOS, antioxidant activity, 
MPO, PGE2, pro-inflammatory cytokines

Roupe et al., 2006;
Son et al., 2010;
Kim et al., 2008

Curcumin activation of NF-κB, overexpression of inflammatory cytokines and adhesion 
molecules, activity of COX-2, iNOS and LOX, antioxidant activity

Jurenka, 2009;
Srivastava et al., 2011;
Aggarwal & Sung, 2009

N-feruloyl serotonin antioxidant activity, LDL oxidation, activation of caspase-3, ROS-dependent 
adhesion, migration of monocytes to endothelial cells, activation of NF-κB

Piga et al., 2009;
Piga et al., 2010

Abbreviations used: AKT: protein kinase B; Bcl-2: B-cell lymphoma 2; Bcl-XL: B-cell lymphoma-extra large; COX: cyclooxygenase; CRP: C-reactive protein; 
GM-CSF: granulocyte-macrophage colony-stimulating factor; ICAM: intracellular adhesion molecule; IL-8: interleukin 8; iNOS: inducible nitric oxide 
synthase; JNK: c-Jun N-terminal kinase; LDL: low density lipoprotein; LOX: lipoxygenase; MAC-1: macrophage-1 antigen; MAPK: mitogen-activated 
protein kinase; MMP: matrix metalloproteinase; MPO: myeloperoxidase; NF-κB: nuclear factor kappa B; NO: nitric oxide; PGE2: prostaglandin E2; 
PI3K: phosphoinositide-3 kinase; ROS: reactive oxygen species; Src: non-receptor tyrosine kinases; Syk: spleen tyrosine kinase; TNFα: tumour necrosis factor 
alpha; TXB2: thromboxane B2; VCAM-1: vascular cell adhesion protein; VEGF: vascular endothelial growth factor; XIAP: X-linked inhibitor of apoptosis protein

Table 2. Effects of natural polyphenols on neutrophils.

Compound References

Resveratrol superoxide anion, hypochlorous acid, chemotaxis
5-LOX, myeloperoxidase, ROS formation
expression ICAM-1, VCAM-1, MAC-1, β2-integrin
activity protein kinases (MAPK, JNK)
elastase, β-glucuronidase, chemotaxis, 
NO production

Perečko et al., 2008;
Alarcón de la Lastra & Villegas, 2005;
Cavallaro et al., 2003;
Adams et al., 2005;
Kohnen et al., 2007

Pterostilbene ROS formation Perečko et al., 2008;
Perečko et al., 2010

Pinosylvin 5-LOX, ROS formation Perečko et al., 2008;
Adams et al., 2005

Piceatannol Syk, phagocytosis and adhesion, apoptosis, TNFα, PGE2, IL-8, ROS production, 
p40phox phosphorylation

Ennaciri & Girard, 2009;
Richard et al., 2005;
Jančinová et al., 2011a

Curcumin aggregation, ROS production, apoptosis, 
chemotaxis, protein kinase C activation, 
5-LOX

Srivastava et al., 2011;
Jančinová et al., 2009;
Jančinová et al., 2011;
Prasad et al., 2004

N-feruloyl serotonin ROS production, protein kinase C activation Nosáľ et al., 2011;
Nosáľ et al., 2010

Abbreviations used: see Table 1. 
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Natural polyphenols and their 
eff ects on neutrophils

Phenolic compounds of plant origin integrate a large 

group of plant secondary metabolites with remarkably rich 

structural variations. They are generally characterised as 

aromatic compounds, possessing one or more hydroxyls 

attached directly to the aromatic (phenolic) moiety of 

the molecule. The most common types of plant phenols 

involve phenolic acids, coumarins, stilbenes, flavonoids, 

lignans, condensed tannins and lignins (Harmatha et al., 

2011). In this review, effects of two derivatives of ferulic 

acid (curcumin, N-feruloylserotonin) and four stilbenes 

(resveratrol, pterostilbene, pinosylvin, piceatannol) are 

summarised, considering the ability of these compounds 

to affect inflammation and particularly neutrophil activity.

Besides their broad structural variability, natural 

polyphenols are characterised by a great variety of bio-

logical effects. Beneficial anti-inflammatory activities, 

most completely examined for resveratrol and curcumin 

(Table  1), have been attributed to the capacity of plant 

phenols to prevent activation of nuclear factor-kappa B 

and the subsequent overexpression of pro-inflammatory 

mediators – cytokines, adhesion molecules, cyclooxygen-

ase-2, 5-lipoxygenase, myeloperoxidase or inducible nitric 

oxide synthase. Minor attention has been concentrated 

on the effect of polyphenols on the activity of neutrophils 

(Table 2). The existing results suggest that plant polyphe-

nols can control neutrophil activity by multiple mecha-

nisms and therefore may be more efficient than synthetic 

inhibitors directed against one particular enzyme or 

receptor (Burgos et al., 2009).
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