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ABSTRACT
Cataract is one of the earliest secondary complications of diabetes mellitus. The lens is a closed system with limited capability to repair 

or regenerate itself. Current evidence supports the view that cataractogenesis is a multifactorial process. Mechanisms related to glu-

cose toxicity, namely oxidative stress, processes of non-enzymatic glycation and enhanced polyol pathway significantly contribute to 

the development of eye lens opacity under conditions of diabetes. There is an urgent need for inexpensive, non-surgical approaches 

to the treatment of cataract. Recently, considerable attention has been devoted to the search for phytochemical therapeutics. Several 

pharmacological actions of natural flavonoids may operate in the prevention of cataract since flavonoids are capable of affecting mul-

tiple mechanisms or etiological factors responsible for the development of diabetic cataract. In the present paper, natural flavonoids 

are reviewed as potential agents that could reduce the risk of cataract formation via affecting multiple pathways pertinent to eye lens 

opacification. In addition, the bioavailability of flavonoids for the lens is considered. 
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by which glucose exerts its toxicity is of utmost impor-

tance for rational pharmacological interventions to treat 

diabetic cataract. The etiology of diabetic cataract is 

multifactorial; multiple hyperglycemia-dependent mech-

anisms leading to an array of subtle post-translational 

modifications in the lens structural proteins contribute to 

its development. The lens is a closed system with limited 

capability to repair or regenerate itself. The proteins of 

the lens are extremely long-lived and there is virtually no 

protein turnover, which provides great opportunities for 

post-translational modification to occur (Bron et al., 2000; 

Harding, 2002; Krishna Sharma & Santhoshkumar, 2009). 

Oxidative stress and its sequelae are clearly involved in 

the etiology of senile cataract, while mechanisms related 

to glucose toxicity, namely oxidative stress, enhanced 

polyol pathway, and processes of non-enzymatic glyca-

tion, significantly contribute to the development of eye 

complications in diabetic patients (Baynes & Thorpe, 

1999; Kyselova et al., 2004; Brownlee, 2005; DelCorso et 

al., 2008; Alexiou et al., 2009; Obrosova et al., 2010).

Under conditions of diabetes, the need of tight blood 

glucose control is a key prerequisite to reduce the inci-

dence, progression, and severity of cataract. Yet periods 

of hyperglycemia in the daily regimen of a diabetic patient 

Introduction

Diabetic patients are susceptible to the development of 

chronic health complications responsible for a significant 

increase in their morbidity and mortality. Cataract, 

eye lens opacification, is one of the earliest secondary 

complications of diabetes mellitus (Kyselova et al., 2004; 

Obrosova et al., 2010). Diabetic patients are about 60% 

more likely to develop these eye conditions. People with 

diabetes also tend to get cataract at a younger age with a 

faster progression (Bron et al., 1998). 

The association between diabetes and cataract forma-

tion has been shown in clinical epidemiological and basic 

research studies (Bron et al., 1998; Pollreisz and Schmidt-

Erfurth, 2010; Obrosova et al., 2010). Since extracellular 

glucose diffuses into the lens uncontrolled by the hormone 

insulin, the lens is one of the most affected body parts 

in diabetes mellitus. The understanding of mechanisms 
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cannot be avoided, with all of the aforementioned delete-

rious consequences of glucose toxicity. Therefore addi-

tional adjunct therapy interfering with the pathological 

processes at molecular level, e.g. based on antioxidants, 

aldose reductase inhibitors and anti-glycation agents, is 

needed to attenuate the noxious effects of glucose. 

Innovative strategies in treatment of diseases of 

multifactorial origin are oriented on a rational design of 

chemical entities able to affect simultaneously multiple 

key mechanisms involved. This approach increases the 

chance of successful therapeutic intervention, decreases 

the risk of side effects and is economical. An example of 

the "multi-target" strategy in treatment of diabetic com-

plications are the bifunctional compounds combining the 

aldose reductase inhibiory activity with the antioxidant 

effect, including pyrido-pyrimidines (La Motta et al., 

2007), pyridazines (Coudert et al., 1994), benzopyranes 

(Constantino et al., 1999) and carboxymethylated pyri-

doindoles (Stefek et al., 2008) or compounds combining 

the aldose reductase inhibiory activity with the ability 

to attenuate nonenzymatic glycation (Demopoulos et 

al., 2005). Considering the detoxification role of aldose 

reductase against toxic carbonyl products, significantly 

enhanced in diabetic tissues (Baynes, 1991; Thorpe & 

Baynes, 1996; Thornalley, 2005; Turk, 2010), the concur-

rent antioxidant action of a multifunctional drug can 

counterbalance its inhibition. In addition, antioxidant 

activity may suppress processes of advanced glycation 

(glycoxidation) at the level of free radical intermediates 

(Baynes, 1991; Thorpe & Baynes, 1996; Brownlee, 2000; 

Giacco & Brownlee, 2010).

Recently, considerable attention has been devoted to 

the search for phytochemical therapeutics. There is epide-

miologic evidence that a sufficient intake of fruit and veg-

etables can lower the risk of cataract in humans (Taylor, 

1993; 1999). A variety of constituents, like vitamins, 

minerals, fiber, and numerous phytochemicals, includ-

ing flavonoids may contribute to the protective effect of 

fruits and vegetables. Indeed, several pharmacological 

actions of flavonoids may operate in the prevention of 

both age-related and diabetic cataract since flavonoids are 

capable of affecting multiple mechanisms or etiological 

factors responsible for the development of sight threaten-

ing ocular diseases (Bhimanagouda, 2009; Majumdar et 

al., 2010; Kalt et al. 2010)

At the pre-clinical level of animal models, flavonoids 

(Figure 1) have been shown to be protective against eye 

lens opacification. In the present paper, flavonoids are 

reviewed as potential agents that could reduce the risk 

of cataract formation via affecting multiple key pathways 

pertinent to eye lens opacification, including oxidative 

stress, non-enzymatic glycation and polyol pathway. In 

addition, the bioavailability of flavonoids to the lens is 

considered.

Anticataract action of fl avonoids

Models in vitro
Under in vitro conditions, using rat lens organ culture 

endowed with hydrogen peroxide, low micromolar 

levels of flavonol quercetin inhibited oxidation-induced 

sodium and calcium influx and loss of lens transpar-

ency (Sanderson et al., 1999). As shown later by Cornish 

et al. (2002), quercetin was rapidly lost from the media 

and readily entered the lens where it was methylated to 

3 -́O-methyl quercetin. Both quercetin and its metabolite 

were active in inhibiting oxidative damage in the lens. 

The glucoside of isorhamnetin (methylated querce-

tin), isolated as a bioactive flavonoid from the leaves of 

Cochlospermum religiosum (Gayathri et al., 2010) and 

flavonoid fraction isolated from fresh leaves of Vitex 

negundo (Rooban et al., 2011) protected enucleated rat 

eye lenses against selenite-induced cataract in an in vitro 

culture model.

The flavonoid venoruton, a mixture of mono-, di-, 

tri- and tetrahydroxyethylrutosides, significantly reduced 

the degree of opacification and the leakage of lactate dehy-

drogenase in rat lens organ culture simulating diabetic 

conditions (Kilic et al., 1997). 

Animal models in vivo
As early as in 1977, Varma et al. (1977) studied the effect 

of quercetin rhamnoside (quercitrin) on the development 

of cataract in the rodent Octodon degus made diabetic by 

a single intraperitoneal dose of streptozotocin. The con-

trol diabetic animals not receiving quercitrin developed 

nuclear opacity by about the tenth day after the onset of 

hyperglycemia. In contrast, the diabetic animals treated 

with quercitrin did not develop cataracts even 25 days 

after the onset of diabetes, although they had a blood glu-

cose concentration similar to that of the control diabetic 

group. In a similar study performed by Lu et al. (2008) in 

streptozotocin diabetic rats, high-isoflavone soy protein 

markedly decreased the death rate and incidence of cata-

racts in the diabetic animals. At the same time, reduced 

serum glucose and methylglyoxal were recorded in the 

treated rats. Nakano et al. (2008) reported lower incidence 

of cataract in streptozotocin diabetic rats treated with 
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Figure 1. Basic fl avonoid structure.
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flavangenol, a  complex mixture of bioflavaonoids with 

oligomeric proanthocyanidin as main constituents.

Topical administration of quercetin to the orbital 

pouch of the galactosemic neonatal rat diminished 

cataractogenesis in the corresponding lens. Comparison 

with the contralateral lens indicated that quercetin 

reduced intracellular edema, prevented extracellular fluid 

accumulation and maintained cellular interdigitation 

of the superficial anterior cortical fiber. In addition to 

preserving fiber integrity, topical application of quercetin 

maintained lens growth as evidenced by radius and dry 

weight measurements (Beyer-Meyers & Farnsworth, 

1979). Analogically, in the same galactosemic rat model, 

Mohan et al. (1988) recorded anticataract action of 

quercetin and structurally related myricetin after topical 

administration. In galactosemic rats, oral treatment with 

quercetin resulted in a significant correction of eye lens 

electrolyte disturbances and normalization of lens pro-

tein levels (Ramana et al., 2007). The results imply that 

inclusion of quercetin contributes to lens transparency 

through the maintenance of characteristic osmotic ion 

equilibrium and protein levels of the lens. The isoflavone 

genistein delayed the progression of cataracts induced in 

rats by dietary galactose (Huang et al., 2007).

The rat selenite cataract model (Shearer et al., 1997; 

Ghupta et al., 2009; Kyselova, 2010) was extensively used 

to study the anticataract action of flavonoids. The results 

of Orhan et al. (1999) showed that ethanol extract of prop-

olis, rich in flavonoids (Scheller et al., 1990), and quercetin 

prevented cataract formation to the extent of 70 and 

40%, respectively. Standardized extract of Ginkgo biloba 

(Egb761) did not affect cataract formation. The flavonoid 

fraction from Emilia sonchifolia was reported (Lija et al., 

2006) to decrease the rate of maturation of selenite cata-

ract more efficiently than quercetin. Activities of super-

oxide dismutase, catalase and reduced glutathione were 

found to be increased in the group treated with Emilia 

sonchifolia, while thiobarbituric acid reacting substances 

were decreased compared with the selenite induced group. 

Rutin (quercetin rutinoside) was reported (Isai et al., 

2009) to prevent selenite-induced cataractogenesis in 

rat pups. At the end of a 30-day study period, all the rat 

pups that had received only selenite were found to have 

developed a dense nuclear opacity in the lens of each eye, 

whereas only 33.3% of pups that had received selenite and 

been treated with an intraperitoneal dose (175 mg/kg of 

body weight) of rutin hydrate were found to have mild len-

ticular opacification in each eye. The other 66.7% of pups 

in that group had clear lenses in both eyes, as in normal 

pups. The mean activities of catalase, superoxide dis-

mutase, glutathione peroxidase, glutathione transferase, 

and glutathione reductase were found to be significantly 

lower in the lenses of cataract-untreated rat pups than in 

normal control rat lenses. However, in lenses treated with 

rutin hydrate, the mean activities of antioxidant enzymes 

were significantly higher than the values in rat pups with 

untreated cataracts.

Onion is a flavonoid-rich foodstuff and the major 

flavonoids contained have been identified as quercetin, 

quercetin-4‘-glucoside and quercetin-3,4‘-diglucoside 

(Fossen et al., 1998; Miean and Mohamed, 2001). In the 

study of Javadzadeh et al. (2009), the instillation of fresh 

juice of crude onion into the rat eyes was found to prevent 

selenite-induced cataract formation by 75%. This effect 

was associated with higher mean total antioxidant level 

as well as higher mean activities of superoxide dismutase 

and glutathione peroxidase in the lenses of rats receiving 

fresh juice of crude onion and subcutaneous injection 

of sodium-selenite, compared with those rats which 

received only sodium-selenite injection. The onion juice, 

as a flavonoid-rich source, was postulated to provide an 

additional support to the antioxidant agents, leading to 

the elevation of total antioxidant levels and superoxide 

dismutase and glutathione peroxidase activities in the rat 

lens, in spite of exposure to sodium-selenite.

Flavonoid fractions isolated from natural sources 

including green and black tea (Thiagarajan et al., 2001; 

Gupta et al., 2002), Ginkgo biloba (Thiagarajan, 2002), 

grape seeds (Durukan et al., 2006), Emilia sonchifolia 

(Lija et al., 2006), Vitex negundo (Rooban et al. 2009) and 

broccoli (Vibin et al., 2010) were shown to have anticata-

ract activity in selenite-induced experimental cataract in 

rats. In addition, Ginkgo biloba extracts were found to 

protect rats against radiation-induced cataract (Ertekin 

et al., 2004).

Among others, damage to the lens epithelium is con-

sidered a possible cause of cataract formation (Hightower, 

1995). Catechin was found to inhibit apoptotic cell death 

in the lens epithelium of rats after cataract induction with 

N-methyl-N-nitrosourea (Leed et al., 2010). Grape seed 

extract rich in flavonoids reduced hydrogen-peroxide-

induced apoptosis of human lens epithelial cells and 

depressed H2O2-induced activation and translocation of 

NF-кB (Jia et al., 2011). Similarly, the flavonoid fisetin was 

found to protect human lens epithelial cells from UVB-

induced oxidative stress by inhibiting the generation of 

reactive oxygen species and modulating the activation of 

NF-кB and MAPK pathways (Yao et al., 2008).

Flavonoids as multifunctional agents

As reviewed below, flavonoids efficiently affect the mul-

tiple key molecular mechanisms involved in the etiology 

of both age-related and diabetic cataract, namely oxida-

tive stress, non-enzymatic glycation and polyol pathway. 

Structural requirements of flavonoids for efficient inhibi-

tion of the above mentioned processes are summarized. 

Flavonoids may interfere also with lens calpain proteases 

and lens epithelial cell signaling, which is however outside 

the scope of this review. 

Antioxidant action of fl avonoids
The antioxidant action of flavonoids, the best described 

biological activity of this group of natural polyphenolic 

substances, is covered by a number of excellent reviews 

(Bors et al., 1990; Cao et al., 1997; Pietta, 2000; Rice-

Evans, 2001; Nijveldt et al., 2001; Bors & Michel, 2002; 
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Heim et al., 2002; Williams et al., 2004; Amič et al., 2007; 

Bischoff, 2008; Boots et al., 2008). Flavonoids may exert 

antioxidant effects due to their ability to act as free radical 

scavengers, hydrogen donating compounds, singlet oxygen 

quenchers, and metal ion chelators. Within the flavonoid 

family, quercetin is the most potent scavenger of reactive 

oxygen species, including superoxide, peroxyl, alkoxyl 

and hydroxyl radicals, and reactive nitrogen species like 

NO. and ONOO (Pietta, 2000; Butkovič et al., 2004; Amič 

et al., 2007; Boots et al., 2008). It is beyond the scope of 

this review to give a thorough survey of the abundant 

literature covering numerous studies of the antioxidant 

action of flavonoids. Nevertheless, key structural features 

responsible for the high antioxidant efficacy of flavonoids, 

also with relevance to the eye lens, are highlighted. 

The general structural requirements for effective 

radical scavenging and/or the antioxidant potential of fla-

vonoids are known as Bors’ criteria (Bors & Michel, 2002; 

Amič et al., 2007), namely (i) the presence of a catechol 

group in ring B, capable of readily donating hydrogen 

(electron) to stabilize a radical species, (ii) the presence of 

2,3-unsaturation in conjugation with a 4-oxo-function in 

the C-ring, which is responsible for electron delocalization, 

and (iii) the presence of a 3-hydroxyl group in the hetero-

cyclic ring which increases the radical-scavenging activ-

ity. The catechol moiety may also contribute to an ability 

to chelate transition metal ions, such as copper and iron. 

Flavonoids were found also to scavenge efficiently 

the model free radicals of 2,2-diphenyl-1-picrylhydrazyl 

and α,γ-bisdiphenylene-β-phenylallyl (Butkovič et al., 

2004). Flavonoid chelating activity for transition metal 

ions has been well documented (Nijveldt et al. 2001; 

Pietta, 2000;Williams et al., 2004). Flavonoids inhibit 

xanthine oxidase, the enzyme responsible for superoxide 

anion production (Hamasaki et al., 1994). Interestingly, 

isorhamnetin (3-methylquercetin) was found to inhibit 

xanthine oxidase, even more efficiently than the aglycone 

form of quercetin (Nagao et al., 1999). 

As reviewed below, the high antioxidant efficacy 

of flavonoids is accompanied by their ability to inhibit 

aldose reductase and non-enzymatic glycation – activities 

of high relevance to the development of diabetic cataract.

Aldose reductase inhibition by fl avonoids
The accumulation of polyol sorbitol within the lens is a 

primary contributing factor to the formation of diabetic 

cataract (Yabe-Nishimura, 1998; Del Corso et al., 2008; 

Alexiou et al., 2009; Obrosova, 2010), a mechanism dif-

ferent from senile cataract. In diabetes, glucose is in a 

high concentration in the aqueous humor and can diffuse 

passively into the lens. The enzyme aldose reductase 

within the lens converts glucose to sorbitol. This polyol 

cannot diffuse passively out of the lens and accumulates 

or is converted to fructose. 

Aldose reductase inhibitors represent a potential ther-

apeutic strategy for preventing the onset or progression 

of diabetic cataract (Costantino et al., 2000; Miyamoto, 

2002; Suzen et al. 2003; Alexiou et al., 2009; Obrosova, 

2010). Pharmacophoric requirements for aldose reductase 

inhibitors are determined by the structural features 

of the inhibitor binding site of aldose reductase, which 

was shown to be formed by a large hydrophobic pocket 

(El-Kabbani et al., 2004). This pocket is mainly composed 

of two regions: a hydrophilic anionic binding site which 

accommodates acidic functionalities and a region of 

hydrophobic residues that binds the hydrophobic aro-

matic ring system of the inhibitors. Inhibitor binding is 

therefore a consequence of polar and non-polar interac-

tions between the inhibitor and the complementary 

residues that line the enzyme binding pocket. It has been 

proposed that the specificity for the inhibitor was mainly 

due to inhibitor-enzyme interactions at the non-polar 

domain (El-Kabbani & Podjarny, 2007).

To date, two main classes of active aldose reductase 

inhibitors have been reported and classified on the basis 

of the ionizable group which allows them to anchor to the 

catalytic site: carboxylic acids (substitution derivatives 

of acetic acid) and spirohydantoins, with epalrestat and 

sorbinil being the most representative members of each 

respective family (Costantino et al., 2000; Miyamoto, 

2002; Suzen et al. 2003; Alexiou et al., 2009). They are 

generally referred to as carboxylate-type and hydantoin-

type inhibitors. A third class of aldose reductase inhibi-

tors represents flavonoids. Since the mid-1970s, a number 

of studies have been reported on the inhibition of aldose 

reductase by flavonoids (Varma et al., 1975; Varma and 

Kinoshita, 1976; Okuda et al., 1982; Nakai et al., 1985; 

Lim et al., 2001; Jung et al., 2002; Matsuda et al., 2002; 

Kawanishi et al., 2003; Lee et al., 2010). Structural features 

required for a firm anchoring to the catalytic site of the 

aldose reductase enzyme, were summarized by Matsuda 

et al. (2002) as follows: (i) the presence of a 7-hydroxyl 

group and catechol moiety at the B ring guarantees the 

strong activity; (ii) the 5-hydroxyl moiety does not affect 

the activity; (iii) the 3-hydroxyl and 7-O-glucosyl moieties 

reduce the activity; (iv) the 2–3 double bond enhances 

the activity; (v) the flavonols having the catechol moiety 

(the 3 ,́4 -́dihydroxyl moiety) at the B ring exhibit stron-

ger activity than those with the pyrogallol moiety (the 

3 ,́4 ,́5 -́trihydroxyl moiety).

Inhibitory action of active flavonoid components 

isolated from natural products against rat lens or 

human recombinant aldose reductase were reported, 

often in comparison with quercetin used as a positive 

control (Matsuda et al., 2002; Suryanarayana et al., 2004; 

Wirasathien et al., 2007; Chethan et al., 2008; Carbone et 

al., 2009; Jung et al., 2008a,b, 2009; 2011; Lee et al., 2010). 

Aldose reductase inhibitors of the flavonoid class, in 

contrast to those of the carboxylate type whose acidic 

nature results in poor biological availability, possess a 

higher pKa value, which is a prerequisite for their better 

pharmacokinetics. 

In the light of the above mentioned biological activi-

ties of natural flavonoids, they serve as an example of 

bifunctional agents for the "multi-target" approach to the 

treatment of diabetic cataract by combining the aldose 

reductase inhibitory activity with its antioxidant action. 

In addition, starting from the flavonol quercetin as a lead 
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structure, a series of 4H-1-benzopyran-4-one derivatives 

was designed and developed as semi-synthetic agents, 

with dual antioxidant/ aldose reductase inhibition activ-

ity (Costantino et al., 1999).

Advanced glycation inhibition by fl avonoids
The process of non-enzymatic glycation is well known to 

be one of the key mechanisms leading to diabetic cataract 

(Shamsi et al., 2000; Brownlee, 2001, 2005; Stitt, 2005; 

Monnier et al. 2005; Nagaraj et al., 2010). In compliance 

with the glycation theory of aging (Monnier & Cerami, 

1981), accumulation of advanced glycation endproducts in 

the aging lens, yet to a lesser extent in comparison with the 

diabetic eye, may contribute to age-related lens opacity. 

In seeking potential anti-cataract drugs, clinically useful 

anti-glycation agents are a reasonable option. As reviewed 

below, a number of naturally occurring flavonoids were 

reported to exhibit inhibitory effects on advanced glyca-

tion endproducts formation. 

Four flavonoids of the methanol extract of Thymus 

vulgaris, quercetin, eriodictyol, 5,6,4’-trihydroxy-7,8,3’-

trimethoxyflavone, and cirsilineol suppressed the levels 

of advanced glycation end products and fructosamines 

of bovine serum albumin under in vitro conditions 

(Morimitsu et al., 1995). By using the bovine serum 

albumin glycation model, Beaulieu et al. (2010) demon-

strated that the flavonoid components of the Vaccinium 

vitis-idaea berry extract were potent antiglycation agents, 

while Wu et al.(2005) recorded significant inhibitory 

activity of the natural flavonoids luteolin, quercetin, 

and rutin. Rutin and metabolites of rutin were found 

to inhibit glycation product formation, including both 

fluorescent and nonfluorescent AGEs, induced by glu-

cose in collagen I in vitro (Cervantes-Laurean, 2006). 

Flavonoids markedly reduced pentosidine formation in 

collagen from bovine Achilles tendon incubated with 

glucose in vitro in the following decreasing order of their 

specific inhibitory activity: myricetin ≥ quercetin> rutin 

> (+)catechin > kaempferol (Urios et al., 2007). Rutin 

and its metabolites 3,4-dihydroxyphenylacetic acid and 

3,4-dihydroxytoluene were found to inhibit histone H1 

glycation by the powerful glycating agent ADP-ribose, as 

effectively as did aminoguanidine (Pashikanti et al., 2010). 

Rutin and G-rutin, a water soluble glucose derivative of 

rutin, suppressed glycation of muscle and kidney proteins 

exposed to glucose in vitro (Nagasawa et al., 2003a). 

Under in vivo conditions, G-rutin was found to inhibit 

glycation reactions in muscle, kidney and plasma proteins 

of streptozotocin-induced diabetic rats (Nagasawa et al., 

2003b).

In their study based on 62 flavonoids, Matsuda et al. 

(2003) formulated structural requirements of flavonoids 

for inhibition of protein non-enzymatic glycation: (i) as 

the hydroxyl groups at the 3´-, 4´-, 5-, and 7-positions 

increased in number, the inhibitory activities became 

stronger; (ii) the activities of flavones were stronger than 

those of corresponding flavonols, flavanones, and isofla-

vones; (iii) methylation or glucosylation of the 4 -́hydroxyl 

group of flavones, flavonols, and flavanones reduced 

their activity; (iv) methylation or glycosylation of the 

3-hydroxyl group of flavonols tended to increase activity; 

(v) glycosylation of the 7-hydroxyl group of flavones and 

isoflavones reduced their activity. Yet these principles 

should be further corroborated. 

In seeking more efficient multifunctional flavonoids 

combining antioxidant activity with both aldose reduc-

tase and advanced glycation inhibitory action, for poten-

tial pharmacological prevention of diabetic cataract and 

other long-term diabetic complications, all three sets of 

the aforementioned criteria should be applied in screen-

ing available databases of flavonoid structures. 

Bioavailability of fl avonoids

Biological activity of flavonoids is often assessed by using 

in vitro models; in almost all such studies, cells are treated 

with aglycones and data are reported at concentrations 

that elicited a response. However, plasma and tissues are 

not exposed in vivo to flavonoids in these forms. The 

forms reaching the blood and tissues are, in general, 

neither aglycones nor the same as the dietary source 

glycosides. In blood, flavonoids are present as conjugates 

of glucuronate or sulfate, with or without methylation 

of the catechol functional group. As a consequence, the 

flavonoid conjugates are likely to possess different biologi-

cal properties and distribution patterns within tissues and 

cells than have flavonoid aglycones. Although deconjuga-

tion can potentially occur in vivo to produce aglycone, it 

occurs only at certain sites. Thus, the extent to which in 

vitro effects produced by the aglycones can be extrapo-

lated to the in vivo situation, in particular in humans, is 

poorly understood (Kroon et al., 2004).

Flavonoids occur in plants mainly in the form of 

O-glycoside conjugates linked to sugars like glucose, 

galactose, arabinose or rhamnose (Bravo, 1998; Arts et 

al., 2004). The bioavailability is primarily determined by 

the type of the sugar moiety (Arts et al., 2004; Crozier et 

al., 2010). In the case of flavonoid-O-β-D-glucosides, the 

aglycone can be enzymatically released in the small intes-

tine by the brush border lactase phlorizin hydrolase (Day 

et al., 1998) or by cytosolic β-glucosidase activity (Ioku 

et al., 1998). The enzyme of lactase phlorizin hydrolase 

exhibits broad substrate specificity for flavonoid-mono-

glucosides and the released aglycone may then enter the 

small intestine epithelial cells by passive diffusion (Day et 

al., 2000). Alternatively, cytosolic β-glucosidase functions 

within the epithelial cells after the glucosides entered via 

the sodium-dependent glucose transporter 1(Gee et al., 

2000). On the other hand, e.g. quercetin-3-rutinoside 

(rutin) is not a substrate of lactase phlorizin hydrolase. 

The quercetin aglycone is released hydrolytically by bac-

terial α-rhamnosidases and β-glucosidases in the lower 

gastrointestinal tract. Thus absorption of quercetin from 

rutin is delayed, and quercetin bioavailability is much 

smaller in comparison with that of quercetin-glucosides. 

This example stresses the role of sugar type for bio-

avalability of natural flavonoid glycosides (Hollman et al., 
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1999; Jaganath et al., 2006; Manach et al., 2005; Crozier 

et al., 2010). Prior to passage into the blood stream, the 

aglycones undergo metabolism forming sulfate, glucuro-

nide and/or methylated metabolites (Morand et al., 1998; 

Manach et al., 2005; Mullen et al., 2006; Crozier et al., 

2010; Kay, 2010). 

Excellent reviews covering broadly the topic of 

bioavalability of flavonoids were published (Scalbert 

& Williamson, 2000; Scalbert et al., 2002; Wale, 2004; 

Clifford, 2004; Manach et al., 2005; Wiliamson & Manach, 

2005; Crozier et al., 2009, 2010; Kay, 2010).

To date, only a few studies have investigated delivery of 

flavonoids to the eye. Drug delivery to the ocular tissues 

depends on the physicochemical and biopharmaceutical 

characteristics of the selected flavonoids and very impor-

tantly on the route of administration. Topical application 

is the most favored mode for ocular conditions. The topi-

cal route is mainly used to deliver drugs to the anterior 

segment of the eye. Local administration may yield much 

higher and effective concentrations of the parent flavo-

noids in the ocular tissues and at much lower doses, than 

the oral route. In the anterior chamber of the eye, the aque-

ous humor bathes the anterior surface of the lens, provid-

ing all oxygen and nutrient requirements. It is therefore 

this route through which dietary flavonoids would reach 

the lens. For example, in the ex vivo experiments reported 

by Cornish et al. (2002), quercetin was shown to enter the 

lens. In the lens, enzymes which metabolized quercetin 

to 3´-O-methyl quercetin were identified. Metabolism 

reduced the efficacy but did not terminate the protective 

action of quercetin since 3 -́O-methyl quercetin was also 

found to be effective in reducing opacification. In analogy 

with the ability of fluoroscein glucuronides to enter the 

anterior chamber of the eye following oral administration 

(Grotte et al., 1985), it was hypothesized that quercetin 

glucuronides would also be transported into the aqueous 

humor if present in plasma, where deglucuronidation 

could occur via endogenous β-glucuronidase activity. 

β-Glucuronidase is present in many tissues and body 

fluids in humans (Sperker et al., 1997) and its activity has 

been demonstrated in the normal human lens (Kamei, 

1998) and aqueous humor (Weinreb et al., 1991). Following 

uptake of glucuronides into the aqueous humor, the lens 

could therefore be exposed to the circulating conjugates 

and/or to aglycone following deglucuronidation in the 

aqueous humor. 

Conclusions

Presently, surgical extraction remains the only cataract 

cure. Cataract surgery has become the most frequent 

surgical procedure in people aged 65 years or older in the 

Western world, causing a considerable financial burden 

to the health care system (Head, 2001; Meyer & Sekundo, 

2005; Bockelbrink et al., 2008). Hence, there is an urgent 

need for inexpensive, non-surgical approaches to the 

treatment of cataract (Olson et al., 2003) since a delay 

of 10 years in the onset of cataract by any means would 

be expected to halve the number of cataract extractions 

(Brian & Taylor, 2001). This calls for a search of alternative 

pharmacological measures to treat this disorder.

In diabetic patients, tight control of hyperglycemia is 

the first prerequisite to attenuate the risk of cataract. In 

addition, adjunct therapy is needed to help preserve vision 

in diabetic patients, aimed at correcting biochemical and 

metabolic abnormalities in the hyperglycemic milieu of 

the diabetic individual. 

The current data on natural polyphenols in relation to 

cataract, along with epidemiological knowledge on diet 

and lens opacity, demonstrate that flavonoids may play a 

role in cataract prevention. Yet future clinical trials are 

needed to assess the benefits of flavonoids in lowering the 

risk of both age-related and diabetic eye complications.
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