
interdisciplinary

Neurobehavioral manifestations of 
developmental impairment of the brain
Michal DUBOVICKÝ

Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovakia

ITX030210R03 • Received: 02 May 2010 • Revised: 20 May 2010 • Accepted: 3 June 2010

ABSTRACT
Individual characteristics of human nature (e.g. introversion, extroversion, mood, activity, adaptability, aggressiveness, social ability, 

anxiety) do not need to be primarily innate. They can be determined by the action of various influences and their interactions on 

functional development of the brain. There is ample epidemiological and experimental evidence that chemical and/or physical factors 

acting during sensitive time windows of the brain development can cause mental, behavioral, emotional and/or cognitive disorders. 

Environmental pollutants, addictive substances, drugs, malnutrition, excessive stress and/or hypoxia-ischemia were reported to induce 

functional maldevelopment of the brain with consequent neurobehavioral disorders. The article provides review on most significant 

neurobehavioral manifestations of developmental impairment of the brain during prenatal, perinatal and early postnatal period. The 

most known adverse factors causing developmental neurobehavioral dysfunctions in humans as well as in experimental animals are 

discussed. 

KEY WORDS:  neurobehavioral dysfunctions; brain development; cognitive disorder; mental disorder; emotional disorder; 

 behavioral disorder; developmental neurotoxicity; environmental factors 

Correspondence address: 

Michal Dubovický, PhD.

Department of Reproductive Toxicology, 

Institute of Experimental Pharmacology & Toxicology, 

Slovak Academy of Sciences

Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic

TEL.: +421-2-59410674 • E-MAIL: michal.dubovicky@savba.sk

The range of neurobehavioral alterations, however, 

depends on the intensity/dosage and duration of the factor 

in question as well as on the developmental stage of the 

brain. Chronic alcohol consumption during pregnancy 

results in fetal alcohol related abnormalities (FARA). Most 

serious manifestation of FARA is fetal alcohol syndrome 

(FAS). FAS is characterized by triads of pathological signs: 

prenatal and postnatal growth retardation, impairment of 

the CNS and facial deformities. On the other hand, mild 

social drinking in pregnancy causes mostly functional 

alterations of the brain, called alcohol related neurodevel-

opmental disorders (ARND) or fetal alcohol effect (FAE). 

FAE is characterized by verbal, cognitive and attention 

deficit (McGough et al., 2009; McGee et al., 2009). 

Fetal and neonatal brain development is characterized 

by developmental time windows during which certain 

brain regions or neuron types are specifically sensitive to 

environmental influences. The immature brain is much 

more sensitive to abnormal experience, particularly sleep 

deprivation, drug exposure, and maternal separation. 

The critical time period, during which features in brain 

susceptibility to such experience change, however, has 

not yet been fully determined. Basal forebrain cholinergic 

Introduction

Introversion, extroversion, mood, activity, adaptability, 

distractibility, persistence and attention span, as well as 

aggressiveness, social ability, tendency to depression and/

or anxiety do not need to be primarily innate. Individual 

characteristics of human nature and behavior could be 

determined by the action of various influences and their 

interactions on functional brain development. 

There is ample epidemiological and experimental evi-

dence that chemical and/or physical factors acting during 

sensitive time windows of the brain development can cause 

behavioral, emotional and/or cognitive dysfunctions. 

Environmental pollutants, addictive substances, drugs, 

malnutrition, excessive stress and/or hypoxia-ischemia 

were reported to induce functional maldevelopment of 

the brain with consequent neurobehavioral disorders. 
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neurons were found to be sensitive to nerve growth fac-

tor (NGF) deprivation during the first postnatal week 

not later (Molnar et al., 1997). The study of Feng et al. 

(2001) is an excellent example of sensitive developmental 

periods from the neurotoxicity point of view. Male rats 

neonatally treated with the tricyclic antidepressant clo-

mipramine (CLI) during various treatment windows, i.e. 

postnatal days (PD) 12–17, 14–20, 16–22, and 12–15, were 

in adulthood tested for sexual behavior. The rats treated 

with CLI showed significant sexual impairment in treat-

ment windows PD12–17 and PD14–20 and slight sexual 

deficiency in the short window PD12–15. No significant 

sexual impairment was found in window PD16–22. The 

results indicate that PD14–20 is the latest window during 

which CLI treatment can produce adult sexual deficiency 

and that 6 days might be the shortest treatment window 

to produce significant behavior abnormalities. 

Moreover, genetic disposition of the fetus, gender 

and racial differences may affect the action of individual 

factors and/or their interferences. Experimental neonatal 

stress and/or monosodium glutamate (MSG) treatment 

can be an example referring to gender issue. MSG and 

combined stressful stimuli represented by 10% NaCl 

administration and mild handling on PD 2, 4, 6, 8 and 10 

were found to increase locomotor activity and slow down 

habituation in an open field test in adult male but not 

female rats (Dubovický et al., 1997; 1999). 

Activity of enzyme alcohol-dehydrogenase metaboliz-

ing ethanol is different in Whites compared to Chinese, 

Native Americans and Japanese (Agarwal and Goedde, 

1986). In this respect it is possible that fetal susceptibility 

to alcohol may also be dependent upon maternal racial 

and genetic dispositions interacting with consumption 

patterns. The basis of these differences remains however 

to be elucidated. Among Blacks, slower metabolism of 

nicotine was found in comparison with Whites (Benowitz 

et al., 1999). Perera et al. (2004) found higher umbilical 

cord serum of the nicotine metabolite cotinine in Blacks 

versus Hispanic newborns. Racial differences in nicotine 

metabolism could reflect differences in low-level prenatal 

smoking on infant behavior. While among White infants, 

increased cotinine levels were associated with increased 

arousal and excitability and decreased self-regulation 

(ability to calm dawn), on the contrary, in Black infants 

increased cotinine levels were associated with decreased 

arousal and excitability and increased ability to self-

regulate (Yolton et al., 2009). 

The present article provides review on the most sig-

nificant neurobehavioral manifestations of developmen-

tal impairment of the brain during the prenatal, perinatal 

and early postnatal/neonatal period. The best known 

adverse factors causing neurodevelopmental behavioral 

dysfunctions in humans as well as in experimental ani-

mals with possible mechanisms of action are discussed. 

The classification of neurobehavioral disorders is not 

unequivocal. Individual manifestations of the disorders 

can overlap. Attention deficit-hyperactivity disorder 

(ADHD) generally belongs to the group of behavioral 

disorders. However, attention deficit as its part can be 

classified as a cognitive dysfunction and ADHD may be 

accompanied also by mood changes. To facilitate orienta-

tion in the broad spectrum of neurobehavioral disorders, 

the review is divided into four most important groups 

of disorders: serious neurodevelopmental disorders, 

cognitive disorders, mental disorders and emotional and 

behavioral disorders. 

Serious neurodevelopmental disorders

The majority of signs of serious neurodevelopmental 

disorders do not belong to the spectrum of neurobehav-

ioral dysfunctions. Although some of these disorders can 

be associated with neurobehavioral deficit or with an 

increased risk for behavioral alterations in later postnatal 

development. However, if cerebral palsy, neurological 

disorders, epilepsy and severe mental retardation were not 

mentioned, the survey of significant neurodevelopmental 

pathologies would be incomplete. 

Cerebral palsy describes a group of permanent 

disorders of the development of movement and posture, 

causing activity limitations attributed to nonprogressive 

disturbances occurring in the developing fetal or infant 

brain. The motor disorders of cerebral palsy are often 

accompanied by disturbances of sensation, perception, 

cognition, communication, and behavior, or by epilepsy 

and secondary musculoskeletal problems (Horsman et al., 

2010). While in certain cases there is no identifiable cause, 

other etiologies include problems in intrauterine develop-

ment (e.g. exposure to radiation, infection), hypoxia of 

the brain and birth trauma during labor and delivery, 

and complications in the perinatal period or during 

childhood (Brucknerová et al., 2008). After birth, other 

causes include toxins, severe jaundice, lead poisoning, 

physical brain injury, incidents involving hypoxia to 

the brain and encephalitis or meningitis (Mendola et al. 

2002; Gilbertson, 2004). 

A neurological disorder is a disorder of the body’s 

nervous system. Structural, biochemical or electrical 

abnormalities in the brain or spinal cord or in the nerves 

leading to or from them, can result in manifestations such 

as paralysis, muscle weakness, poor coordination, loss of 

sensation, seizures, confusion, pain and altered levels of 

consciousness. A unique example of neurological compli-

cations due to developmental effects of chemicals is the 

Minamata disease. The first well-documented outbreak 

of acute developmental methyl mercury poisoning by 

consumption of contaminated fish occurred in Minamata, 

Japan, in 1953. Typical features of the disease are as fol-

lows: sensory disturbances, ataxia, seizures, constriction 

of the visual field, auditory disturbances and tremor 

(Harada, 1995, Ekino et al., 2007). Fetal neurodevelop-

ment depends on cell programs, developmental trajecto-

ries, synaptic plasticity, and oligodendrocyte maturation, 

which are variously modifiable by factors such as stress 

and endocrine disruption, exposure to pesticides such 



61
Also available online on intertox.sav.sk & versita.com/science/medicine/it

Interdisciplinary Toxicology. 2010; Vol. 3(2): 59–67

Copyright © 2010 Slovak Toxicology Society SETOX

as chlorpyrifos and to drugs such as terbutaline, and 

by premature birth (Mendola et al., 2002; Connors et al., 

2008). Prenatal nicotine was reported to cause abnormal 

reflexes and hypertony/hypotony in neonates and infants 

(Yolton et al., 2009). 

Epilepsy is a common chronic neurological disorder 

characterized by recurrent unprovoked seizures. These 

seizures are transient signs and/or symptoms of abnor-

mal, excessive or synchronous neuronal activity in the 

brain. Epilepsy is more likely to occur in young children 

or people over the age of 65 years, however it can occur at 

any time (Fisher et al., 2005). During the neonatal period 

and early infancy the most common causes of epilepsy 

include hypoxic-ischemic encephalopathies, CNS 

infections, toxins, trauma, congenital CNS abnormali-

ties and metabolic disorders (Scher, 2003; Vestergaard 

et al., 2005). 

Mental retardation is a generalized disorder, charac-

terized by significantly impaired cognitive functioning 

and deficits in adaptive behavior with onset before the age 

of 18. It has historically been defined by an intelligence 

quotient score under 70. Once focused almost entirely 

on cognition, the definition now includes both a com-

ponent relating to mental functioning and one relating 

to the individual ś functional skills in the environment 

(Van der Aa et al., 2010). Down syndrome, fetal alcohol 

syndrome and fragile X syndrome are the three most 

common inborn causes of mental retardation. A woman 

who drinks alcohol or gets an infection like rubella dur-

ing pregnancy may also have a baby with mental disability 

(Batshaw, 1993; Devenny et al., 2000; Merrick et al., 2006). 

If a baby has problems during labor and birth, as e.g. not 

getting enough oxygen, he or she may have developmental 

disability due to brain damage (Kaindl et al., 2009).

Cognitive disorders

Cognitive disorders are disorders in which the central 

feature is impairment of memory, attention, perception, 

thinking, problem solving and language. 

Drinking of alcohol during pregnancy seriously affects 

neurobehavioral development of children. Even social 

drinking in pregnancy was found to result in cognitive 

dysfunctions accompanied by deficit in language ability in 

infants both in reception and expression of the language 

(McGee et al., 2009). Attention problems were found in 

children of mothers drinking in pregnancy and/or using 

psychotropic drugs (Dalen et al., 2009). 

Polybrominated diphenyl eters (PBDEs) are synthetic 

flame retardants added to polymers for the manufacture 

of electrical appliances, carpets and polyurethane foam. 

They have similar effects as polychlorinated biphenyls. 

They bind to androgen and estrogen receptors and can 

injure the activity of thyroidal hormones, which play 

a significant role in neurodevelopmental processes such 

as timing of neural and glial proliferation, migration 

and differentiation, myelination, synaptic connectivity, 

development of dopaminergic and cholinergic system 

(Figueredo et al., 1993; Sawin et al., 1998; Auso et al., 

2004;). The functional maldevelopment due to PBDs can 

lead to neurocognitive dysfunctions. A mixture of PBDs 

in the neonatal period was reported to result in cognitive 

deficit with disorders of attention and inhibitory control 

in rats (Driscoll et al., 2009). Rats exposed prenatally to 

polychlorinated biphenyls and/or methyl mercury had 

a deficit in cognitive and behavioral tests (Sable et al., 

2009). 

About 12% of women do not quit smoking during 

pregnancy. Nicotine causes intrauterine growth retar-

dation, increases the risk for miscarriage and cognitive 

and behavioral disorders. Nicotine mimics the action of 

acetylcholine which plays an important role in the devel-

opment of auditory neural circuitry. During development, 

excessive stimulation of nicotine receptors can lead to 

their injury. This in turn can result in injury of sensory 

encoding of auditory information associated with disorder 

of auditory habituation in neonates, delayed vocalization, 

disorders of language perception and reading abilities in 

infants (Kable et al., 2009). 

The Environment Protection Agency (USA) considers 

the blood level of 10 μg/dL lead to be a risk for health. 

Recent studies, however, showed that levels under 5 μg/dL 

can injure cognitive functions, lower the score of reading 

abilities and mathematics. Moreover, prenatal alcohol 

and/or drugs can increase sensitivity to lead toxicity in 

neonates and infants (Min et al., 2009). 

Prenatal cocaine acts adversely during development 

by two basic mechanisms: it decreases uterine blood flow 

resulting in fetal hypoxia, and it affects development of 

the brain monoamines leading to functional maldevelop-

ment of the brain mostly in the prefrontal cortex, which 

is responsible for executive functions, attention and neu-

rocognitive functions. Prenatal cocaine causes attention 

deficit and has negative effects on reaction of the organ-

ism to new stimuli (Hurt et al., 2009; Eiden et al., 2009). 

It is important to note that functional development of 

the brain does not end in infancy. Functional maturation 

of the brain continues to adolescence, e.g. processes of 

sprouting and pruning. Alcohol and addictive substances 

in adolescents can therefore have more deleterious effects 

than in adults. Binge drinking in adolescents was reported 

to cause macrostructural and microstructural changes 

of the white matter (e.g. volume, density of fibers, etc.) 

(Jacobus et al., 2009). These alterations in turn can lead 

to neurocognitive dysfunctions in later development or 

could potentate unfavorable effects of other environmen-

tal factors. 

Organophosphate pesticides damage replication of 

neurons, differentiation, axogenesis, synaptogenesis and 

development of neuronal circuitry. They affect ACh and 

5-HT systems, what in turn may lead to cognitive dys-

function as well as the emotional and behavioral disorders 

(Slotkin et al., 2009). 

Prenatal and/or perinatal hypoxia-ischemia is a major 

factor for the development of cognitive dysfunctions in 
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later life (Gitto et al., 2009; Brucknerová et al., 2008; 

Mach et al., 2009). Memory and learning deficits are very 

frequent consequences of lack of oxygen and nutrition 

during brain development. The hippocampus is one brain 

region that can be damaged and this site of damage has 

been implicated in two different long-term outcomes, 

cognitive memory impairment and the psychiatric 

disorder schizophrenia (de Haan et al., 2006). The risk 

of cognitive deficits is related to the severity of neonatal 

encephalopathy and the pattern of brain injury on neu-

roimaging, particularly the watershed pattern of injury 

(Gonzales & Miller, 2006). Cognitive deficit is one of the 

manifestations of fetal hydantoin syndrome due to tera-

togenicity of phenytoin (PHT), an anticonvulsant drug 

used in treatment of epilepsy. PHT is considered to induce 

teratogenicity by affecting the hemodynamic status of the 

pregnant mother as well as of the embryo/fetus, eventu-

ally leading to embryo-fetal hypoxia (Adams et al., 1990; 

Wells and Winn, 1996; Navarová et al., 2005; Ujházy et 

al., 2008). PHT causes serious structural and functional 

changes including memory deficiency (Okruhlicová 

et al., 2003; Ujházy et al., 2004; Mach et al., 2005). 

Xenoestrogens were reported to negatively affect spatial 

learning of male rats in water maze (Ceccarelli et al., 2009).

Mental disorders 

A mental disorder is a psychological or behavioral pattern 

associated with distress or disability that occurs in an 

individual and is not a part of normal development or cul-

ture. The recognition and understanding of mental health 

conditions has changed over time and across cultures, and 

there are still variations in the definition, assessment, 

and classification of mental disorders, although standard 

guideline criteria have been widely accepted (American 

Psychiatric Association, 2000). Mental disorders can arise 

from a combination of sources. In many cases there is no 

single accepted or consistent cause currently established. 

A common belief even to this day is that disorders result 

from genetic vulnerabilities exposed to environmental 

stressors. 

Schizophrenia is a mental disorder characterized by 

abnormalities in the perception or expression of reality. It 

is most commonly manifested as auditory hallucinations, 

paranoid or bizarre delusions, or disorganized speech and 

thinking with significant social or occupational dysfunc-

tion. Onset of symptoms typically occurs in young adult-

hood, with around 0.4–0.6% of the population affected 

(Castle et al., 1991). 

There is much evidence of neurodevelopmental origin 

of schizophrenia. Epidemiological studies found a season-

ally-related increase in schizophrenia for people born in 

winter months when infections are more frequent (Battle 

et al., 1999). Reelin, a protein that regulates processes of 

neuronal migration and positioning in the developing 

brain, showed significantly reduced gene expression in 

the brain of schizophrenic patients as well as in animals 

used as a model of this disease (Erbel-Sieler et al., 2004). 

In schizophrenia, dopaminergic hyperfunction in certain 

brain regions is considered the key element of the disease. 

The developmental model of schizophrenia has been 

proposed based on the dopamine hypothesis. It has been 

shown that neonatal exposure to the dopamine D2/3 

receptor agonist quinpirole leads to supersensitivity or 

priming of D2/3 receptors (Kostrzewa, 1995; Kostrzewa 

et al., 2005). This supersensitivity was accompanied by 

spatial learning deficit and alterations in motor activity 

(Vorhees et al., 2009). 

Anxiety disorders are blanket terms covering several 

different forms of abnormal and pathological fear and 

anxiety. Current psychiatric diagnostic criteria recognize 

a wide variety of anxiety disorders: generalized anxiety 

disorder, panic disorder, phobias, social anxiety disorder, 

obsessive–compulsive disorder, post-traumatic stress dis-

order, separation anxiety, childhood anxiety disorder. The 

amygdala is central to the processing of fear and anxiety, 

and its function may be disrupted in anxiety disorders. 

There are many experimental studies confirming the 

relationship between prenatal/perinatal insults and adult 

anxiety disorders. Whereas in humans, more studies 

would be needed to ascertain long-term behavioral effects 

of adverse stimuli on pregnant women and their offspring. 

Emerging data from human and animal perinatal expo-

sure studies demonstrate a subtle effect of cannabis 

upon later brain functioning including specific cognitive 

deficits, especially in visuospatial function, impulsivity, 

inattention and hyperactivity, depressive/anxiety signs 

and symptoms (Sundram, 2006). Maternal exposure to 

caffeine was found to induce long-term consequences 

on sleep, locomotion, learning abilities, emotivity, and 

anxiety in rat offspring (Nehlig & Debry, 1994). 

Hypoxia-ischemia represents a risk factor for func-

tional alterations of the brain structures and functions 

related to anxiety/fear. Asphyxiated animals in the 

perinatal period were found to exhibit a significantly 

decreased social aggressiveness and an increased social 

contact behavior, as well as increased anxiety levels in 

adulthood (Weitzdoerfer et al., 2004). Antenatal inter-

mittent hypoxia caused a decrease of motor activity as 

well as an enhanced anxiety level in rats of both sexes, 

while males appeared to be more sensitive to hypoxic 

influence (Trofinmova et al., 2010). Other studies have 

also shown that neurobehavioral changes due to mild 

perinatal hypoxia were mainly related to emotional/anx-

ious responses (Hoeger et al., 2000; Venerosi et al., 2006). 

The neuroendocrine system, especially the hypo-

thalamus-pituitary-adrenal (HPA) axis, is very sensitive 

to excessive stressful stimuli during development. 

Prenatal stress can interfere with functional development 

of the brain a  can cause neurobehavioral dysfunctions 

in later postnatal period. Epidemiological studies pro-

vided knowledge on long-term effects of prenatal stress 

on neurobehavioral development (Graignic-Phillipe & 

Tordjman, 2009), cognitive ability and fearfulness in 

infancy (Bergman et al., 2007). Experimental studies 
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showed that increased levels of stress hormones could 

affect development of hippocampus and other brain 

regions and cause long-term changes in HPA axis reac-

tivity (Sapolsky et al., 1984; Uno et al., 1990). Behavioral 

alterations were correlated with an increase of cortico-

streone level in reaction to a stressful stimulus, as well 

as its prolonged secretion, and a  decreased density of 

hippocampus glucocorticoid receptors (Henry et al., 

1994; Maccari et al., 1995; Vallée et al., 1996; Maccari & 

Morley-Fletcher, 2007). Prenatal stress is associated with 

an increased anxiety/fear-like behavior in adult rats and 

an increased sensitivity of to stressful stimuli (Valleé et 

al., 1997). Repeated stress in late pregnancy in monkeys 

was found to induce depressive behavior in infant mon-

keys and cognitive deficit (Schneider, 1992). Prenatal 

social stress can program anxiety behavior and HPA axis 

responses to stress in offspring. Attenuated glucocorticoid 

feedback mechanisms in the limbic system may underlie 

HPA axis hyper-reactivity to stress in offspring (Brunton 

& Russel, 2010). Prenatal stress has been found to affect 

brain development and behavior of male and female rats 

differentially (Weinstock, 2007). On the other hand, early 

postnatal stress in the form of manipulation (handling) 

resulted in decreased anxiety and corticosterone secre-

tion in reaction to stressful stimuli (Valée et al., 1997). 

Altered behavior observed in adulthood is likely the result 

of neurodevelopmental perturbations elicited by early life 

stress. It can be assumed that there is "a critical period" 

for neural circuits involved in emotional expression that 

contribute to lifelong susceptibility to stress (Matsumoto 

et al., 2009). Moreover, developmental administration of 

some drugs can affect HPA axis functioning in adulthood. 

Exposure to phenytoin in utero was found to increase 

catecholamine and corticosterone concentrations in 

response to a mild stressor in adult offspring (Makatsori 

et al., 2005). 

Mood/affective disorders are characterized by a consis-

tent, pervasive alteration in mood, and affecting thoughts, 

emotions, and behaviors. There are two basic types of 

mood disorders, i.e. depressive and bipolar disorder. In 

affective disorders, we also need to rely on experimental 

studies. 

It was shown that prenatal exposure to the inhibitor 

of serotonin (5-HT) synthesis para-chlorophenylalanine 

(PCPA) caused fetal 5-HT depletion and change both in 

open field activity and in depression-related behavior in 

the adult rat offspring (Vataeva et al., 2008). Prescription 

of selective serotonin reuptake inhibitors and/or sero-

tonin-noradrenalin reuptake inhibitors (SSRI/SNRI) 

in pregnancy and lactation may represent a risk for the 

unborn child. Prenatal administration of fluoxetine in 

mice resulted in dose-dependent development of affective 

disorders (Noorlander et al., 2008). Prenatal exposure to 

fluoxetine caused a decrease in a number of neurons in the 

frontal cortex (Swerts et al., 2009) and decrease in 5-HT 

receptor density in the frontal cortex in pre-pubescent 

rats and in the middle brain in adult rats (Cabrera-Vera et 

al., 1997). Generally, administration of SSRI and/or SNRI 

drugs during sensitive developmental periods of the brain 

increases the risk for neuronal circuitry alterations and 

maladaptive behavior persisting up to adulthood in the 

form of enhanced depression and/or anxiety, and even 

aggressive behavior (Borue et al., 2007). 

Emotional and behavioral disorders

Emotional and behavioral disorders form a broad category, 

which is used commonly in educational settings, to group 

a range of more specific perceived difficulties of children 

and adolescents. Both general definitions as well as actual 

diagnosis of these disorders may be controversial as the 

observed behavior may depend on many factors.

Emotions and behavior are controlled by a complex 

of central executive and regulatory functions. Executive 

functions are a complex of cognitive and behavioral com-

petences inevitable in solving demanding, non-routine 

and aim-oriented tasks and/or situations. (organizational 

and information processing, oriented attention, work-

ing memory, inhibition). The emotional and behavioral 

regulatory system has two basic components. The first is 

the latency and intensity of reactions to environmental 

stimuli (reactivity), the second is represented by behav-

ioral responses and strategy/coping modulated by the 

reactions (regulatory components) involving self-calming, 

communicative behavior, behavioral strategy to disperse 

attention from the incentive stimulus and/or approach/

withdrawal behavior. Emotional arousal regulation 

provides excitatory/inhibitory balance, which protects 

central executive functions against excessive stimulation 

and helps to coordinate cortical systems. The dorsal and 

lateral prefrontal lobe, amygdala and other brain regions 

are responsible for these functions (Drevets and Raichle, 

1998; Avants et al., 2007). Prenatal cocaine inhibits re-

uptake of DA, NA and 5-HT on the presynaptic membrane 

and causes vasoconstriction followed by hypoxia. This 

can lead to long-term cognitive and neurodevelopmental 

consequences manifested in middle infancy, puberty or 

adolescence when there are increased demands, chal-

lenges and more complex cognitive processes are needed 

for educational, behavioral, social and executive functions. 

It has been shown that prenatal cocaine affects execu-

tive functions manifested by lowered inhibitory control 

of excessive verbal responses in children (Rose-Jacobs 

et al., 2009). Moreover, prenatal cocaine damages the 

prefrontal cortex and amygdale, which leads to cognitive 

and emotional dysfunctions manifested by memory and 

attention alterations (Li et al., 2009). Prenatal cocaine can 

affect these regulatory systems and results in attention 

disorder, frustration, impulsivity, disruptive behavior, 

low motor inhibition. In experimental animals prenatal 

cocaine resulted in stress-related freezing and aggressive 

behavior (Eiden et al., 2009). 

Autism spectrum disorders (ASD) are a spectrum 

of psychological conditions characterized by widespread 

abnormalities of social interactions and communication, 
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as well as severely restricted interests and highly repeti-

tive behavior. Autism is a disorder of neural development 

characterized by impaired social interaction and commu-

nication, and by restricted and repetitive behavior. These 

signs all begin before a child is three years old. Autism 

affects information processing in the brain by altering 

nerve cell and synaptic connection and organization. The 

other two disorders are Asperger syndrome, where there 

are delays in cognitive development and language, and 

Pervasive developmental disorder. Childhood disintegra-

tive disorder, also known as Heller’s syndrome and Rett 

syndrome are very close to autistic spectrum disorders 

as to certain signs, such as impaired social interaction. 

ASD has a strong genetic basis, although the genet-

ics of autism are complex and it is unclear whether it is 

explained more by rare mutations with major effects, 

or by rare multigene interactions of common genetic 

variants. The arising complexity is due to interactions 

among multiple genes, the environment, and epigenetic 

factors which do not change DNA but are heritable and 

influence gene expression (Abrahams & Geschwind, 

2008; Buxbaum, 2009). Several lines of evidence point 

to synaptic dysfunction as a cause of autism. All known 

teratogens related to the risk of autism appear to act dur-

ing the first eight weeks from conception, and though 

this does not exclude the possibility that autism can be 

initiated or affected later, there is strong evidence that 

autism arises very early in development (Arndt et al., 

2005). 

An association between autism and prenatal tha-

lidomide was found in Sweden study of autistic poeple 

(Strömland et al., 1994; Strömland et al., 2002). Compared 

to the rate of autistic children in Sweden (approximately 

1/1000), there was a highly significant increase in tha-

lidomide victims, about 5%. Animal studies showed that 

maternal administration of thalidomide or valproic acid 

caused disruption of early serotonegic neuronal develop-

ment and neurobehavioral alterations in a manner that is, 

in part, consistent with human autism (Miyazaki et al., 

2005; Narita et al., 2010). Other factors that have been 

claimed to contribute to or exacerbate autism, include 

infectious disease, heavy metals, organophosphates, 

solvents, diesel exhaust, phthalates and phenols used 

in plastic products, pesticides, brominated flame 

retardants, alcohol, smoking, illicit drugs, vaccines, 

and prenatal stress (Newschaffer et al., 2007; Kinney et 

al., 2008). Moreover, a hyperserotonemia in pregnancy 

du to SSRI treatment might be one of the reasons of the 

increasing frequency of autism in the human popula-

tion (Hadjikhani, 2009). Today children are surrounded 

by thousands of synthetic chemicals. Two hundred of 

them are neurotoxic in adult humans, and 1000 more in 

laboratory models. Yet fewer than 20% of chemicals have 

been tested for neurodevelopmental toxicity. Prevalence, 

genetic, exposure, and pathophysiological evidence all 

suggest a role for environmental factors in the inception 

and lifelong modulation of ASD. Expanded research into 

environmental causation of autism is however needed 

(Herbert, 2010; Landrigan, 2010). 

Attention-Deficit Hyperactivity Disorder (ADHD) 

is a neurobehavioral developmental disorder. It is pri-

marily characterized by “the co-existence of attention 

problems and hyperactivity, with each behavior occurring 

infrequently alone” and symptoms starting before seven 

years of age. ADHD is the most commonly studied and 

diagnosed psychiatric disorder in children, affecting 

about 3% to 5% of children globally and diagnosed in 

about 2% to 16% of school aged children. It is a chronic 

disorder with 30% to 50% of individuals diagnosed in 

childhood continuing to have symptoms into adulthood. 

Adolescents and adults with ADHD tend to develop cop-

ing mechanisms to compensate for some or all of their 

impairments. A specific cause of ADHD is not known. 

There are, however, a number of factors that may contrib-

ute to ADHD. They include genetics, diet and social and 

physical environments. 

Adverse impacts of chronic or intermittent hypoxia 

on development, behavior, and academic achievement 

have been reported in many well-designed and controlled 

studies in humans (Bass et al., 2004). An experimental 

study on rats showed that perinatal asphyxia (non-

sophisticated caesarian section model used) on day 20 of 

gestation in duration of 20 min resulted in hyperactivity 

in repeated open field test. However, the hyperactivity 

manifested gradually during the experiment. In the first 

session, the rats exhibited lower activity compared to con-

trols, indicating their neophobia in a new environment. 

This behavioral pattern resembled hyperactive profile 

in ADHD children. They are behaviorally inhibited in 

an unknown environment and highly active in familiar 

surroundings (Dubovicky et al., 2007; 2008). Global 

brain injury produced by neonatal hypoxia also produced 

hyperactivity, as did hippocampal injury produced by 

ontogenetic exposure to X-rays, and cerebellar injury 

produced by the developmental treatments with the 

antimitotic agent methylazoxymethanol or with poly-

chlorinated biphenyls (Sable et al., 2009). More recently, 

developmental exposure to nicotine has been implicated 

in childhood hyperactivity (Kostrzewa et al., 2008; Kable 

et al., 2009). 

Conclusion

Maintenance of the optimal fetal environment is the 

key factor of the future quality of life. Conditions like 

inadequate nutrition and oxygen supply, infection, hyper-

tension, gestational diabetes or drug abuse by the mother, 

expose the fetus to a non-physiological environment. In 

conditions of severe intrauterine deprivation, there is a 

potential loss of structural units within the developing 

organ systems affecting their functionality and efficiency. 

Extensive human epidemiologic and animal model data 

indicate that during critical periods of prenatal and 

postnatal mammalian development, nutrition and other 

environmental stimuli influence developmental pathways 

and thereby induce permanent changes in metabolism 

and chronic disease susceptibility (Bezek et al., 2008). 
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There is epidemiological and experimental evidence 

that environmental factors influence a diverse array of 

molecular mechanisms and consequently alter disease 

risk not only for metabolic syndrome and cardiovascular 

diseases, insulin resistance and diabetes mellitus, osteo-

porosis, asthma and immune system diseases but also for 

psychiatric and neurobehavioral disorders (Rinaudo & 

Lamb, 2008; Bezek et al., 2008). 

Fetal and early childhood exposures to industrial 

chemicals in the environment can damage the developing 

brain and can lead to neurodevelopmental disorders, such 

as autism, ADHD and mental retardation. We can speak 

of "a silent pandemic". As it was mentioned in the editorial 

in the Nature (2010), the beginning of the 21st century is 

becoming a decade for psychiatric disorders. Mental dis-

orders affect more than 27% of adult Europeans every year. 

They are the main cause of suicides in European Union. 

Economic issue of mental and behavioral disorders is also 

inconsiderable, treatment of these disorders can cost up 

to 4% of GDP (Krištofičová, 2008). Researchers have found 

that about 200 industrial chemicals have the capacity to 

damage the human brain, and they conclude that chemi-

cal pollution may have harmed the brains of millions of 

children worldwide (Labie, 2007). Nevertheless, the toxic 

effects of industrial chemicals on children have generally 

been overlooked. 

Further knowledge on possible unfavorable effects of 

chemical compounds as well as other harmful factors on 

the developing brain is needed. Serious epidemiological 

studies along with experiments by using appropriate 

animal models can help to elucidate possible risks for the 

developing organism and may decrease the frequency 

of mental and neurobehavioral disorders in the human 

population. 
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