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AbstrAct
Ingestion of aristolochic acid (AA) is associated with the development of aristolochic acid nephropathy, which is characterized by 
chronic renal failure, tubulointerstitial fibrosis and urothelial cancer. AA may also cause a similar type of kidney fibrosis with malignant 
transformation of the urothelium, the Balkan endemic nephropathy. Understanding which enzymes are involved in AA activation and/or 
detoxication is important in the assessment of a susceptibility to this carcinogen. The most important human enzymes activating AA by 
simple nitroreduction in vitro are hepatic and renal cytosolic NAD(P)H:quinone oxidoreductase, hepatic microsomal cytochrome P450 
1A2 and renal microsomal NADPH:cytcohrome P450 reductase, besides cyclooxygenase, which is highly expressed in urothelial tissue. 
Despite extensive research, contribution of most of these enzymes to the development of these diseases is still unknown. Hepatic 
cytochromes P450 were found to detoxicate AA in mice, and thereby protect the kidney from injury. However, which of cytochromes 
P450 are the most important in this process both in animal models and in humans have not been entirely resolved as yet. In addition, 
the relative contribution of enzymes found to activate AA to species responsible for induction of urothelial cancer in humans remains 
still to be resolved.
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Introduction

Aristolochic acid (AA), the plant extract of Aristolochia spe-
cies, is a mixture of structurally related nitrophenanthrene 
carboxylic acids, with 8-methoxy-6-nitro-phenanthro-(3,4-
d)-1,3-dioxolo-5-carboxylic acid (AAI) and 6-nitro-phenan-
thro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAII), being the 
major components (Figure 1) (IARC, 2002). Recently AA 
was proven to be the cause of so-called Chinese herbs neph-
ropathy (CHN), a unique type of rapidly progressive renal 
fibrosis associated with the prolonged intake of Chinese 
herbal remedies during a slimming regimen, observed for 
the first time in Belgium in 1991 (Vanherweghem et al., 

1993; Vanhaelen et al., 1994; Schmeiser et al., 1996). About 
100 CHN cases have been identified so far in Belgium, half 
of which needed renal replacement therapy, mostly includ-
ing renal transplantation (Arlt et al., 2002b). The observed 
nephrotoxicity has been traced to the ingestion of herbal 
preparation Aristolochia fangchi containing nephrotoxic AA 
inadvertently included in slimming pills (Vanhaelen et al., 
1994). CHN patients, who were exposed to Aristolochia spe-
cies containing AA and had no relationship with the Belgian 
slimming clinic, have been identified in other European 
countries, in Asia and in the USA (about 170 cases) (Arlt 
et al., 2002b). Therefore, this disease is now called aristo-
lochic acid nephropathy (AAN) (Gillerot et al., 2001; Arlt 
et al., 2002b; Cosyns, 2003). Recently, a high prevalence of 
urothelial cancer was found in the cohort of AAN patients 
in Belgium (Nortier et al., 2000) and cases of urothelial can-
cer have also been described in other countries (Arlt et al., 
2004). These findings highlight the carcinogenic potential 
of AA to humans. Indeed, AA is among the most potent 2% 
of known carcinogens (Arlt et al., 2002b; IARC, 2002). As 
a consequence, herbal remedies containing species of the 
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genus Aristolochia were recently classified as carcinogenic 
to humans (Group 1) by the International Agency for 
Research on Cancer (IARC) (IARC, 2002).

It is also noteworthy that AA consumption may be 
a cause for the development of a similar type of kidney 
fibrosis with malignant transformation of the urothelium, 
the Balkan endemic nephropathy (BEN) (Ivic, 1969; Tatu et 
al., 1998; Arlt et al., 2002a; Stiborová et al., 2005b), which is 
widely found in certain areas of Romania, Croatia, Bosnia, 
Serbia and Bulgaria along the Danube river basin (Tatu et 
al., 1998; Stiborová et al., 2005b; Stefanovic et al., 2006). At 
least 25,000 individuals suffer from BEN or are suspected 
of having the disease, while the total number of people at 
risk in these countries may exceed 100,000. Although first 
described more than 50 years ago, the etiology of BEN 
remains unclear and is a matter of debate (Tatu et al., 1998; 
Stefanovic et al., 2006). For the last years evidence has 
accumulated that BEN is an environmental disease. Recent 
experimental data shows that AA might be one of the most 
important etiologic factors in BEN and associated urothelial 
cancer (Arlt et al., 2002a; Stefanovic et al., 2006; Grollman 
et al., 2007). AA exposure is associated with chronic dietary 
uptake of seeds of Aristolochia clematitis by the population 
living in BEN regions (Ivic, 1969; Arlt et al., 2002a; Hranjec 
et al., 2005).

Aristolochic Acid-Mediated Renal 
Injury and Carcinogenesis 

The molecular mechanisms for AA-mediated renal injury, 
and if it is an early stage of the urothelial-specific tumor 
development, are still matter of debate and need further 
investigations. In this context, it is noteworthy that a 
case of AA-induced tumor development without renal 
injury (Nortier et al., 2003) suggests dissociation between 
AA-mediated nephrotoxicity and carcinogenicity. AA seems 
to directly cause renal injury through activating mitochon-
drial permeability transition, which was found recently in 
human renal tubular epithelial cells (Qi et al., 2007). This 
suggestion, however, needs to be confirmed by further stud-
ies. In contrast to suggestion that AA might be the direct 
cause of the instestitial nephropathy, metabolic activation 

of AA to species forming DNA adducts is an important step 
for AA-induced malignant transformation (Arlt et al., 2007; 
Stiborová et al., 2008b). Indeed, the molecular mechanism of 
AA-induced carcinogenesis demonstrates a strong associa-
tion between DNA adduct formation, mutation pattern and 
tumour development (Arlt et al., 2007). The predominant 
AA-DNA adduct, 7-(deoxyadenosin-N6-yl)aristolactam I 
(dA-AAI), which is the most persistent of the adducts in the 
target tissue, is a mutagenic lesion leading to AT trans-
versions in the p53 gene in DNA from urothelial tumors of 
AAN and BEN patients (Lord et al., 2004; Arlt et al., 2007; 
Grollman et al., 2007). 

Metabolism of Aristolochic Acid and 
Biotransformation Enzymes 

One of the common features of AAN and BEN is that not 
all individuals exposed to AA suffer from nephropathy 
and tumor development. We have suggested earlier that 
one cause for these different responses may be individual 
differences in the activities of the enzymes catalyzing the 
biotransformation (detoxication and/or activation) of AA 
(for a summary, see Stiborová et al., 2008b) Many genes of 
enzymes metabolizing toxicants and carcinogens are known 
to exist in variant forms or show polymorphisms resulting 
in differing activities of the gene products. These genetic 
variations appear to be important determinants of cancer 
risk or other toxic effects of xenobiotics (Stiborová et al., 
2008b). 

The proposed activation and detoxication pathways for the 
major component of AA, aristolochic acid I (AAI), are shown 
in the Figure 2. AAI is activated by simple nitroreduction to 
N-hydroxyaristolactam I that forms a cyclic N-acylnitrenium 
ion as the ultimate carcinogenic species binding to DNA 
to form 7-(deoxyadenosin-N6-yl)aristolactam I (dA-AAI) 
as the major persistent adduct, participating in initiation 
of carcinogenesis. The enzymes activating AA to species 
binding to DNA in vitro were studied in details (Stiborová 
et al., 2008b). Using in vitro studies we have found that the 
most important human and rat enzyme activating AAI in 
vitro in hepatic and renal cytosolic subcellular fractions is 
NAD(P)H:quinone oxidoreductase (NQO1)(Stiborová et al., 
2002a; 2003; 2005a) followed by cytochrome P450 (CYP) 
1A1/2 in liver microsomes (Stiborová et al., 2001c; 2005c) 
and NADPH:CYP reductase (POR) in kidney microsomes 
(Stiborová et al., 2001b; 2005a), besides prostaglandin H 
synthase (cyclooxygenase, COX) (Stiborová et al., 2001a), 
which is highly expressed in urothelial tissue. However, the 
confirmation that isolated (purified) human NQO1 is really 
capable of activating AAI remains still to be investigated. 
Such a proof is of great importance. It is namely noteworthy 
that NQO1-polymorphism (the genotype NQO1*2/*2) 
seems to predispose patients suffering from BEN to the 
development of urothelial malignancy of the upper uri-
nary tract (OR=13.75, 95%CI 1.17-166.21) (Toncheva et al., 
2004). Therefore, the targets of our future work are the 
confirmation of this finding (predisposition of patients to 
the development of cancer by NQO1-polymorphism), and 
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the confirmation of the major role NQO1 in AAI activation. 
The results of such studies might answer the question why 
AAI-induced cancer is developed in only some of the AAN 
and BEN patients.

The competing conversion of N-hydroxyaristolactam I 
to the corresponding 7-hydroxyaristolactam or its further 
reduction to aristolactam I should be considered detoxica-
tion pathway; both these metabolites were found to be 
excreted. However, even though aristolactam I is not a direct 
DNA binding species, low amounts of the dA-AAI adduct, 
with the highest levels in one of the target tissues, the renal 
pelvis, were generated in rats treated with aristolactam I 
(Dong et al., 2006). This result is consistent with finding 
that formation of the dA-AAI adduct by aristolactam I 
was observed after its in vitro activation with different 
peroxidases of which several, such as COX-1 and/or COX-2, 
are expressed at high levels in renal tissue (Stiborová et 
al., 1999). It is still questionable if enzymes capable of 
conjugating the proximate carcinogenic metabolite of AAI, 
N-hydroxyaristolactam I, are involved in AAI activation. 
Meinl et al. (2006) demonstrated that expression of some 
human sulfotransferases (SULTs), particularly SULT1A1, in 
bacterial and mammalian target cells enhances the muta-
genic activity of AAI. However, our preliminary experi-
ments did not bring unambiguous results. On one hand, we 

found that an increase in AAI-induced mutagenicity was 
correlated with higher AAI-DNA adduct levels in V79 cells 
transfected with human SULT1A1 (Glatt et al., unpublished 
results). However, our further results suggest that SULTs in 
human hepatic and renal cytosols do not participate in an 
increase in AAI-DNA adduct formation in these subcellular 
systems. Thus, the exact role of conjugation enzymes in 
AAI activation awaits further investigation and is another 
aim of our additional studies. 

While most of the enzymes catalyzing the reductive 
activation of AAI in vitro have already been identified, 
the question, which of them actually participates in this 
process in vivo, remains to be answered. Additional factors 
such as route of administration, absorption, renal clearance 
and tissue-specific enzyme expression make it difficult to 
extrapolate from data found in vitro (Stiborová et al., 2008b) 

to the in vivo situation. Such a study is, therefore, the next 
target of our future investigation.

The oxidation of AAI to aristolochic acid Ia (AAIa) 
has been suggested to be a detoxication pathway of AAI 
(Arlt et al., 2002b; Stiborová et al., 2008b). Namely, AAIa 
or its conjugates, the O-glucuronide, the O-acetate and the 
O–sulfate esters, were excreted in urine (Chan et al., 2006; 
2007). AAIa is also reduced to N-hydroxyaristolactam Ia 
forming aristolactam Ia, which together with its conjugates, 
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induced by MC, could contribute to decreased AAI levels 
in MC-treated mice. 

Taking into account all data known at the present time, 
we propose that the pathways of AAI metabolism are dic-
tated by the binding affinity of AAI to CYP1A or NQO1, and 
their enzymatic turnover as well as by the balance between 
the efficiency of CYP1A to oxidize and reduce AAI. In order 
to confirm this assumption and to complement our former 
studies (Stiborová et al., 2008b; 2008c), and the work of Xiao 
et al. (2008), we started a study investigating formation of 
AAI-DNA adducts in the HRN mouse model, and in models, 
in which CYP1A genes are deleted.

Conclusions

Although hepatic CYP enzymes were found to detoxicate 
AAI in mice, thus decreasing its renal toxicity (Xiao et al., 
2008), individual enzymes, which might metabolize (activate 
and/or detoxicate) AAI in vivo, and their impact on AAI-
mediated nephrotoxicity and carcinogenicity, have not been 
fully resolved as yet. Therefore, such a subject remains to 
be investigated. Namely, the evaluation of inter-individual 
variations in the human enzymes playing a major role in 
AAI activation and detoxication, including their genetic 
polymorphisms, remain a major challenge to explain an 
individual’s susceptibility to AAI, and to predict cancer risk 
among the AAN and BEN patients. Therefore, the study we 
started in our laboratory addresses still unsettled question 
whether the metabolism of AAI, and if so, which enzymes 
participating in this process, determine pathophysiological 
effects of this compound in development of AAN and BEN 
diseases. 
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the N- and O-glucuronides, is excreted (Chan et al., 2006; 
2007). Enzymatic reactions leading to aristolactam Ia and its 
metabolites seem to be purely detoxication pathway, because 
DNA adducts containing aristolactam Ia structure have as 
yet never been found. In contrast to the enzymes activating 
AAI in vitro, those participating in AAI oxidation to AAIa 
both in vitro and in vivo have not been extensively studied 
so far. Our preliminary studies indicated that CYP enzymes 
can generate this oxidative metabolite (Stiborová et al., 
2008b). However, the question which of the CYP enzymes 
are responsible for formation of AAIa remains still to be 
investigated. In this context it is noteworthy that a large-
scale investigation in BEN patients on the role of genetic 
polymorphisms in genes of some phase I detoxication CYP 
enzymes revealed a possible risk for BEN (OR 2.41) in indi-
viduals carrying CYP3A5*1 allele G6989 (Toncheva et al., 
2004; Toncheva 2006). Although we found that this CYP did 
not activate AAI to dA-AAI adduct (Stiborová, unpublished 
results), we do not know, if this CYP species is involved in 
AA detoxication. Furthermore, as mentioned above, we also 
do not know if other CYPs, and which of them, are capable of 
detoxicating AAI. Therefore, the evaluation of the oxidative 
detoxication of AAI by individual CYP enzymes is the target 
of studies in several laboratories. Indeed, very recently, Xiao 
et al. (2008) showed novel data concerning the enzymes 
detoxicating AAI. The HRN (Hepatic Cytochrome P450 
Reductase Null) mice, which we had shown previously to be 
a suitable model to determine hepatic xenobiotic metabo-
lism in vivo (Arlt et al., 2005; 2006; 2008; Stiborová et al., 
2008a) and suggested to use to elucidate AA metabolism 
(Stiborová et al., 2008b), were successfully used in their 
study (Xiao et al., 2008). The authors’ results indicate that 
hepatic CYPs detoxify AAI by its demethylation to aristo-
lochic acid Ia (AAIa), and thereby protect the kidney from 
AAI-induced injury. The observations of Xiao et al. (2008) 

combined with results found previously, support strongly 
the former hypothesis (Stiborová et al., 2008b) that a key 
point determining the carcinogenic and nephrotoxic effects 
of AAI lies in the balance of activities of reductases such 
as NQO1, catalyzing the AAI-DNA adduct formation, and 
enzymes such as CYPs, which detoxicate AAI to AAIa.

The question which of the CYP enzymes are responsible 
for formation of AAIa remains still to be investigated. The 
in vitro experiments of Xiao et al. (2008) indicate that CYP1A 
generate AAIa. However, the model used to evaluate CYP1A 
participation in formation of AAIa in vivo, mice treated with 
an inducer of CYP1A 3-methycholanthrene (MC), did not 
bring unambiguous results. Namely, MC also induces other 
enzymes beside CYP1A. Although treatment of mice with 
MC leads to decrease in AAI concentrations in the liver and 
kidney, no increase in AAIa concentrations was found in 
the liver, only in the kidney of mice treated with the higher 
dose of AAI (20 mg/kg). An increase in AAIa excretion due 
to its conjugation with glucuronide, caused by induction 
of UDP-glucuronosyltransferase with MC, could occur. 
Nevertheless, because CYP1A enzymes also activate AAI to 
species forming DNA adducts (Stiborová et al., 2008b), the 
decrease of AAI in liver and kidney might also result from 
this reaction. Moreover, NQO1, which is also efficiently 

REfEREnCES
Arlt VM, Ferluga D, Stiborova M, Pfohl-Leszkowicz A, Vukelic M, Vdovic S, 

Schmeiser HH, Cosyns JP. (2002a) Is aristolochic acid a risk factor for Bal-
kan endemic nephropathy-associated urothelial cancer? Int J Cancer 101: 
500–502.

Arlt VM, Henderson CJ, Wolf CR, Schmeiser HH, Phillips DH, Stiborova M. (2006) 
Bioactivation of 3-aminobenzanthrone, a human metabolite of the environ-
mental pollutant 3-nitrobenzanthrone: evidence for DNA adduct formation 
mediated by cytochrome P450 enzymes and peroxidases. Cancer Lett 234: 
220–231.

Arlt VM, Stiborová M, Henderson CJ, Thiemann M, Frei E, Aimová D, Singhs R, 
da Costa GG, Schmitz OJ, Farmer PB, Wolf CR, Phillips DH. (2008) Metabolic 
activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts 
with detoxification in vivo: experiments with hepatic cytochrome P450 re-
ductase null mice. Carcinogenesis 29: 656–665.

Arlt VM, Stiborova M, Schmeiser HH. (2002b) Aristolochic acid as a probable hu-
man cancer hazard in herbal remedies: a review. Mutagenesis 17: 265–277.



12
M. Stiborová, J. Hudeček, E. Frei & H.H. Schmeiser
Contribution of biotransformation enzymes to the development of renal injury and urothelial cancer 

iSSN: 1337-6853 (print version) | 1337-9569 (electronic version)

Arlt VM, Alunni-Perret M, Quatrehomme G, Ohayon P, Albano L, Gaid H, Michiels 
JF, Meyrier A, Cassuto E, Wiessler M, Schmeiser HH, Cosyns J-P. (2004) Aristo-
lochic acid (AA)-DNA adduct as marker of AA exposure and risk factor for AA 
nephropathy-associated cancer. Int J Cancer 111: 977–980.

Arlt VM, Stiborová M, vom Brocke J, Simoes ML, Lord GM, Nortier JL, Hollstein 
M, Phillips DH, Schmeiser HH. (2007) Aristolochic acid mutagenesis: molecu-
lar clues to the etiology of Balkan endemic nephropathy-associated urothe-
lial cancer. Carcinogensis 28: 2253–2261.

Arlt VM, Stiborova M, Henderson CJ, Osborne MR, Bieler CA, Frei E, Martinek 
V, Sopko B, Wolf CR, Schmeiser HH, Phillips DH. (2005) Environmental pol-
lutant and potent mutagen 3-nitrobenzanthrone forms DNA adducts after 
reduction by NAD(P)H:quinone oxidoreductase and conjugation by acetyl-
transferases and sulfotransferases in human hepatic cytosols. Cancer Res 65: 
2644–2652.

Chan W, Cu L, Xu G, Cai Z. (2006) Study of the phase I and phase II metabo-
lism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass 
spectrometry, Rapid Commun. Mass Spectrom 20: 1755–1760.

Chan W, Luo H-B, Zheng Y, Cheng Y-K, Cai Z. (2007) Investigation of the metab-
olism and reductive activation of carcinogenic aristolochic acid in rats, Drug 
Metab Dispos 35: 866–874.

Cosyns JP. (2003) Aristolochic acid and “Chinese herbs nephropathy”: a review 
of the evidence to date. Drug Safety 26: 33–48.

Dong H, Suzuki N, Torres MC, Bonala RR, Johnson F, Grollman AP, Shibutan S. 
(2006) Quantitative determination of aristolochic acid-derived DNA adducts 
in rats using 32P-postlabeling/polyacrylamide gel electrophoresis analysis. 
Drug Metab Dispos 34: 1122–1127.

Gillerot G, Jadoul M, Arlt VM, van Ypersele de Strihou C, Schmeiser HH, But PHH, 
Bieler CA, Cosyns J-P. (2001) Aristolochic acid nephropathy in a Chinese pa-
tient: time to abandon the term “Chinese herbs nephropathy”? Am J Kidney 
Dis 38: E26.

Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes 
A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, Slade N, Turesky R, Good-
enough AK, Rieger R, Vukelic M, Jelakovic B. (2007) Aristolochic acid and 
the etiology of endemic (Balkan) nephropathy, Proc Natl Acad Sc USA,104: 
12129–12134.

Hranjec T, Kovac A, Kos J, Mao W, Chen JJ, Grollman AP, Jelakovic B. (2005) En-
demic nephropathy: the case for chronic poisoning by aristolochia. Croat 
Med J, 46: 116–125.

IARC (International Agency for Research on Cancer). (2002) Some traditional 
herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr 
Eval Carcinog Risks Hum 82.

Ivic M. (1969) Etiology of endemic nephropathy. Lijec Vjesn 91: 1273–1281.

Liu Z, Hergenhahn M, Schmeiser HH, Wogan GN, Hong A, Hollstein M. (2004) 
Human tumor p53 mutations are selected for in mouse embryonic fibroblasts 
harboring a humanized p53 gene. Proc Nat Acad Sc USA 101: 2963–2968.

Lord GM, Hollstein M, Arlt VM, Roufosse C, Pusey CD, Cook T, Schmeiser HH. 
(2004) DNA adducts and p53 mutations in a patient with aristolochic acid-
associated nephropathy. Am J Kidney Dis 43: e11–17.

Meinl W, Pabel U, Osterloh-Quitroz H, Hengstler JG, Glatt H. (2006) Human sul-
photransferases are involved in the activation of aristolochic acids and are 
expressed in renal target tissue. Int J Cancer 118: 1090–1097.

Nortier JL, Martinez MC, Schmeiser HH, Arlt VM, Bieler CA, Petřin M, Depierreux 
MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL. (2000) 
Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia 
fangchi). N Engl J Med 342: 1686–1692.

Nortier JL, Schmeiser HH, Martinez MCM, Arlt VM, Vervaet C, Garbar CH, Dael-
emans P, Vanherweghem JL. (2003) Invasive urothelial carcinoma after expo-
sure to Chinese herbal medicine containing aristolochic acid may occur with-
out severe renal failure. Nephrol Dial Transplant 18: 426–428.

Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y, Wu X, Li Y, Xue X, Ren J. (2007) Role 
of mitochondrial permeability transition in human renal tubuar epithelial cell 
death induced by aristolochic acid. Toxicol Appl Pharmacol 222: 105–110.

Schmeiser HH, Bieler CA, Wiessler M, van Ypersele de Strihou C, Cosyns JP. 
(1996) Detection of DNA adducts formed by aristolochic acid in renal tissue 
from patients with Chinese herbs nephropathy. Cancer Res 56: 2025–2028.

Stefanovic V, Toncheva D, Atanasova S, Polenakovic M. (2006) Etiology of Balkan 
endemic nephropathy and associated urothelial cancer. Am J Nephrol 26: 1–11.

Stiborová M, Arlt VM, Henderson CJ, Wolf CR, Kotrbová V, Moserová M, 
Hudeček J, Phillips DH, Frei E. (2008a) Role of hepatic cytochromes P450 
in bioactivation of the anticancer drug ellipticine: studies with the hepatic 
NADPH:cytochrome P450 reductase null mouse. Toxicol Appl Pharmacol 
226: 318–327.

Stiborová M, Frei E, Arlt VM, Schmeiser HH. (2008b) Metabolic activation of car-
cinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy. Mu-
tat Res 658: 55–67.

Stiborová M, Frei E, Breuer A, Bieler C A, Schmeiser HH. (1999) Aristolactam I 
a metabolite of aristolochic acid I upon activation forms an adduct found 
in DNA of patients with Chinese herbs nephropathy. Exp Toxic Pathol 51: 
421–427.

Stiborová M, Frei E, Breuer A, Wiessler M, Schmeiser HH. (2001a) Evidence for re-
ductive activation of carcinogenic aristolochic acids by prostaglandin H syn-
thase – 32P-postlabeling analysis of DNA adduct formation. Mutat Res 493: 
149–160.

Stiborová M, Frei E, Wiessler M, Schmeiser HH. (2001c) Human enzymes in-
volved in the metabolic activation of carcinogenic aristolochic acids: evi-
dence for reductive activation by cytochrome P450 1A1 and 1A2. Chem Res 
Toxicol 14: 1128–1137.

Stiborová M, Frei E, Schmeiser HH. (2008c) Biotransformation enzymes in de-
velopment of renal injury and urothelial cancer cause by aristolochic acid. 
Kidney Int 73: 1209–1211.

Stiborová M, Frei E, Sopko B, Wiessler M, Schmeiser HH. (2002a) Carcinogenic aris-
tolochic acids upon activation by DT-diaphorase form adducts found in DNA 
of patients with Chinese herbs nephropathy. Carcinogenesis 23: 617–625. 

Stiborová M, Frei E, Sopko B, Sopková K, Marková V, Laňková M, Kumstýřová T, 
Wiessler M, Schmeiser HH. (2003) Human cytosolic enzymes involved in the 
metabolic activation of carcinogenic aristolochic acid: evidence for reductive 
activation by human NAD(P)H:quinone oxidoreductase. Carcinogenesis 24: 
1695–1703.

Stiborová M, Frei E, Hodek P, Wiessler M, Schmeiser HH. (2005a) Human hepatic 
and renal microsomes, cytochromes P450 1A1/2, NADPH:cytochrome P450 
reductase and prostaglandin H synthase mediate the formation of aristo-
lochic acid-DNA adducts found in patients with urothelial cancer. Int J Can-
cer 113: 189–197.

Stiborová M, Hájek M, Frei E, Schmeiser HH. (2001b) Carcinogenic and nephro-
toxic alkaloids aristolochic acids upon activation by NADPH:cytochrome P450 
reductase form adducts found in DNA of patients with Chinese herbs neph-
ropathy. Gen Physiol Biophys 20: 375–392.

Stiborová M, Patočka J, Frei E, Schmeiser HH. (2005b) Biochemistry and toxico-
logical aspects of etiology of Balkan endemic nephropathy [in Czech]. Chem 
Listy 99: 782–788.

Stiborová M, Sopko B, Hodek P, Frei E, Schmeiser HH, Hudeček J. (2005c) The 
binding of aristolochic acid I to the active site of human cytochromes P450 
1A1 and 1A2 explains their potential to reductively activate this human car-
cinogen. Cancer Lett 229: 193–204.

Tatu CA, Oren WH, Finkelman RB, Feder GL. (1998) The etiology of Balkan en-
demic nephropathy: still more questions than answers. Environ Health Per-
spect 106: 689–700.

Toncheva DI, von Ahsen N, Atanasova SY, Dimitrov TG, Armstrong VM, Oellerich 
M. (2004) Identification of NQO1 and GSTs genotype frequencies in Bulgarian 
patients with Balkan endemic nephropathy. J Nephrol 17: 384–389.

Toncheva D. (2006) Genetic studies in BEN and associated urothelial cancers. 
Coll. Antropol 30(Suppl 1): 34.

Vanherweghem JL, Depierreux M, Tielemans C, Abramowicz D, Dratwa M, Ja-
doul M, Richard C, Valdervelde D, Verbeelen D, Vanhaelen-Fastre B, Vanhaelen 
M. (1993) Rapidly progressive interstitial renal fibrosis in young women: associ-
ation with slimming regimen including Chinese herbs. Lancet 341: 387–391.

Vanhaelen M, Vanhaelen-Fastre R, But P, Vanherweghem JL. (1994) Identifica-
tion of aristolochic acid in Chinese herbs. Lancet 343: 174.

Xiao Y, Ge M, Xue X, Wang H, Wu X, Li L, Liu L, Qi X, Zhang Y, Li Y, Xie T, Gu J, Ren 
J. (2008) Detoxication role of hepatic cytochrome P450s in the kidney toxicity 
induced by aristolochic acid. Kidney Int 73: 1231–1239.


